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Abstract—3D generation methods powered by 2D diffusion
priors often struggle to synthesize realistic geometric details,
resulting in overly smooth surfaces or inaccurate geometry baked
into albedo textures. We present TactileDreamFusion, a framework
that incorporates tactile sensing as an additional modality to
enhance geometric details in 3D generation. By learning a unified
3D texture field and jointly refining visual textures guided by
high-resolution tactile normals, our approach produces high-
fidelity textures with accurate alignment between appearance
and geometry. We demonstrate results on both text-to-3D and
image-to-3D tasks.

Index Terms—visual-tactile synthesis, 3D generation

I. INTRODUCTION

Generating high-fidelity 3D assets is essential for appli-
cations in gaming, VR/AR, and robotics simulation. Recent
advances in generative models [1], [2], neural rendering [3], [4],
and large-scale datasets [5], [6] have enabled 3D asset creation
from a single image [7] or a text prompt [8], [9]. However,
these methods often produce overly smooth geometry or bake
fine details into the albedo map without true surface variation.

Two key challenges remain: the lack of high-resolution
geometry in current datasets [5], [6] and the difficulty of
specifying geometric textures in language. To address these
gaps, we propose leveraging tactile sensing to capture fine-
grained surface detail for 3D generation.

Given a text prompt or input image, we generate a base mesh
with an albedo map and capture tactile normals using GelSight
sensors [10], [11]. These tactile signals are converted into
normal maps, and we train a TextureDreambooth to synthesize
diverse texture patches. A lightweight 3D texture field is learned
to jointly optimize visual and tactile textures using diffusion-
based guidance.

Our method further enables multi-part texture synthesis by
aggregating 2D diffusion-based part segmentation into a 3D
label field. Experiments demonstrate that our approach produces
coherent, high-resolution geometry and textures with accurate
cross-modal alignment.

II. METHOD

Tactile Data Acquisition. To capture high-resolution geo-
metric details, we use the GelSight sensor [10], [11], which
applies photometric stereo to measure fine surface normals at
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Fig. 1. Our method refines 3D generation using tactile input, improving
geometric details and visual realism.
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Fig. 2. TouchTexture dataset. We collect tactile normal data from
18 daily objects featuring diverse tactile textures. To demonstrate the
local geometric intricacies, we show the tactile normal map and a 3D
height map for each object. Please refer to the supplement for the
full set of our data.

micrometer resolution. We collect tactile data by pressing the
sensor against object surfaces and process the output height
maps with high-pass filtering to isolate high-frequency textures.
Non-contact regions are masked out, and the resulting height
maps are converted back to normal maps.

Figure 2 shows examples of our TouchTexture dataset,
which contains 18 daily objects with various tactile textures.
These tactile exemplars are used for both initialization and
guidance of our texture field learning.

Base Mesh and Texture Field. Given a text or image
prompt, we generate a base mesh M with an albedo UV map
using Wonder3D [12]. To incorporate tactile signals, we learn
a 3D texture field β(p) = (c,nT) using multi-resolution hash
encoding [13], where c is albedo and nT is the tactile normal.

Rendering is performed via a differentiable rasterizer R [14],
compositing mesh normals nB with tactile normals nT via the
TBN matrix for shading:

n = QTBN · nT. (1)

Texture Refinement with Tactile Guidance. We optimize
the texture field with reconstruction and diffusion-based refine-
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Fig. 3. Method overview. Given an input image or text prompt, our method
generates a mesh with high-quality visual and normal textures using a 3D
texture field. We jointly optimize albedo and tactile normal textures with
diffusion-based visual and tactile guidance, leveraging distinct camera sampling
for visual and tactile supervision. A customized Texture Dreambooth further
refines tactile alignment to match the input exemplars.
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Fig. 4. Diverse textures with the same object. With additional texture cues
from tactile data, we can synthesize diverse textures with the same coarse
shape for customized designs.

ment losses:

L = λVMLVM + λTMLTM + λV GLV G + λTGLTG. (2)

The visual matching loss LVM supervises the albedo field
against the UV-projected texture. The tactile matching loss
LTM aligns the tactile normal field with synthesized normal
maps from tactile exemplars using image quilting [15].

For refinement, we employ a normal-conditioned Control-
Net [16] for visual guidance (LV G) and a LoRA-finetuned
Texture DreamBooth [17], [18] for tactile guidance (LTG),
both implemented as multi-step denoising diffusion processes:

LV G =
∣∣∣∣∣∣̂IC − Iϕ

∣∣∣∣∣∣
1
+ LLPIPS , LTG = 1− cos(̂IT, Iψ).

(3)

Multi-Part Texture Assignment. To support multi-material
generation, we segment object parts via diffusion attention
maps [19], [20], merging multi-view results into a 3D part
label field supervised by a cross-entropy loss. This allows part-
specific tactile supervision by adapting LTM and LTG with
per-part masks.

Our approach unifies tactile sensing and diffusion priors to
enable 3D texture generation with aligned visual and geometric
details.

III. EXPERIMENT

We validate our method on text-to-3D and image-to-3D
generation tasks using the TouchTexture tactile dataset,
consisting of 18 real-world materials such as strawberry skin,
striped steel, and canvas bag. Each material includes five
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Fig. 5. Multi-part texture generation. Our method assigns different tactile
textures to object parts specified by text or image prompts. We show predicted
labels, albedo, normals, and full-color renderings, with zoom-in patches
highlighting the generated normal textures.
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Fig. 6. Baseline comparison. Compared to the SOTA image-to-3D (Wonder3D
and DreamGaussian) and text-to-3D (DreamCraft3D) baselines, our method
produces significantly more plausible low-level geometry. For a fair comparison,
we use the same input image for the first three rows.

high-resolution GelSight [10], [11] tactile patches with paired
descriptions. One patch is used to initialize the texture field
via image quilting [15], and the remaining are used to train
Texture DreamBooth.

Single-Texture Generation and Transfer. Our method
generates coherent visual and geometric textures from both
text and image prompts, demonstrating accurate albedo-normal
alignment as shown in Figure 1. We further showcase in
Figure 4 the flexibility by transferring different tactile textures
(e.g., metal grid, rubber, canvas) onto the same object, enabling
user-driven customization with real material priors.

Multi-Part Textures. In Figure 5, we assign distinct tactile
textures to different semantic parts of an object (e.g., cactus
and pot) using text prompts and diffusion-based segmentation.
Our method produces consistent, segmented textures guided
by the learned 3D label field.

Comparison with Baselines. We compare our method with
DreamCraft3D [21], DreamGaussian [22], and Wonder3D [12].
As shown in Figure 6, our approach produces finer normal
details and stronger color-geometry alignment, while Dream-
Craft3D exhibits overfitting artifacts and the “Janus” effect. In
a user study with 1,000 responses on AMTurk, participants
preferred our results in over 85% of cases for both texture
appearance and geometric details.
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