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Abstract— We propose ConViTac, a visual-tactile represen-
tation learning network designed to enhance the alignment of
features during fusion using contrastive representations. Our
key contribution is a Contrastive Embedding Conditioning
(CEC) mechanism that leverages a contrastive encoder pre-
trained through self-supervised contrastive learning to project
visual and tactile inputs into unified latent embeddings. These
embeddings are used to couple visual-tactile feature fusion
through cross-modal attention, aiming at aligning the unified
representations and enhancing performance on downstream
tasks. We conduct extensive experiments to demonstrate the
superiority of ConViTac in real world over current state-of-
the-art methods and the effectiveness of our proposed CEC
mechanism, which improves accuracy by up to 12.0% in
material classification and grasping prediction tasks.

I. INTRODUCTION

Vision and touch are two fundamental sensory modalities
for robots, offering complementary information that en-
hances perception and manipulation tasks. Previous research
has attempted to jointly learn visual-tactile representations
to extract more meaningful information. However, these
approaches often rely on direct combination, such as feature
addition and concatenation, for modality fusion, which tend
to result in poor feature integration.

The human brain demonstrates a remarkable ability to
integrate visual and tactile information by visually pinpoint-
ing the area being touched and using tactile perceptions
to enhance its understanding of that specific region within
the visual field, aided by pre-learned semantic knowledge
[1]. In this paper, inspired by this idea in neuroscience,
we introduce ConViTac, a novel visual-tactile representation
learning method that improves multi-modal fusion through
contrastive representations, due to their potentials to build
connectivity between different modalities [2]. Central to
our approach is the Contrastive Embedding Conditioning
(CEC) mechanism, which integrates contrastive representa-
tions, originally obtained through self-supervised learning,
into a fully supervised learning framework. CEC mechanism
first train a contrastive encoder through SimCLR [3] in a self-
supervised way, and then leverages this pretrained contrastive
encoder to project visual and tactile data into a learned
joint space to get unified representations. These projected
contrastive embeddings are then combined and used as a con-
dition to align feature fusion via cross-modal attention. Our
experimental results demonstrate the superiority of ConViTac
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Fig. 1. An overview of our proposed ConViTac architecture. Our ConViTac
processes visual and tactile sequences through a two-stage Contrastive
Embedding Conditioning (CEC) mechanism: a) First, it performs self-
supervised contrastive learning via SimCLR [3] on all visual-tactile data
to pretrain a contrastive encoder, which projects both visual and tactile
inputs into a unified latent space. b) Subsequently, it employs the projected
contrastive representations to align visual-tactile fusion in supervised learn-
ing, with the contrastive encoder frozen. The output y represents the results
from various substream tasks, including material classification and grasping
prediction. Aligned features are visualized by GradCam [4] for reference.

over existing state-of-the-art (SoTA) supervised and con-
trastive learning methods. We also perform ablation studies
to quantitatively and qualitatively validate the effectiveness
of the proposed CEC mechanism.

II. SELF-SUPERVISED CONTRASTIVE MULTI-MODAL
REPRESENTATION PROJECTION

We begin by training a contrastive encoder Ec within all
visual-tactile data using self-supervised contrastive learning
to project visual and tactile data into latent embeddings
within a shared feature space, which is achieved through
SimCLR [3]. During the self-supervised contrastive learning
process, we employ Ec to obtain a projected latent embed-
ding ep ∈ R2N×P×D from any single image v in the visual
sequence V and any single image t in the tactile sequence
T :

ep = C[Ec(v), Ec(t)]. (1)

The loss function for the self-supervised learning Lc can
be written as follows:

Lc = −
2B∑
i=1

log
exp(Si,i+B)∑
j ̸=i exp(Si,j)

, (2)

where B represents the batch size of all samples, and Si,j

refers to the similarity matrix, calculated as:

Si,j =
epi · e

p
j

τ
, (3)



TABLE I
MATERIAL CLASSIFICATION. THE METRIC IS ACCURACY (%) AND THE BETTER RESULTS ARE IN BOLD FONT. CHANCE REFERS TO THE BASELINE

PERFORMANCE LEVEL THAT WOULD BE EXPECTED BY A RANDOM CLASSIFIER.

Category Methods
Modality Touch and Go ObjectFolder Real

Vision Touch Category Hard / Soft Rough / Smooth Category Hard / Soft Rough / Smooth

- Chance - - 18.6 66.1 56.3 13.8 50.6 49.0

Contrastive Learning

VT CMC [5] ✓ ✓ 68.6 87.1 82.4 29.5 59.8 65.6

SSVTP [6] ✓ ✓ 70.7 88.6 83.6 34.1 61.1 74.3

MViTac [7] ✓ ✓ 74.9 91.8 84.1 30.8 61.4 70.7

Supervised Learning

STAM [8] - ✓ 52.6 88.9 75.1 40.4 67.0 68.6

VTFSA [9] ✓ ✓ 66.8 92.5 82.2 47.9 72.2 74.1

ConViTac (Ours) ✓ ✓ 86.3 94.3 88.5 59.9 77.2 81.1

TABLE II
PREDICTING SUCCESS OF GRASPING. THE METRIC IS ACCURACY (%)
AND THE BEST RESULTS ARE IN BOLD FONT. CHANCE REFERS TO THE

BASELINE PERFORMANCE LEVEL THAT WOULD BE EXPECTED BY A

RANDOM CLASSIFIER.

Category Methods
Modality

Accuracy (%)
Vision Touch

- Chance - - 50.8

Contrastive Learning
VT CMC [5] ✓ ✓ 56.3

SSVTP [6] ✓ ✓ 59.9

MViTac [7] ✓ ✓ 60.3

Supervised Learning

STAM [8] - ✓ 80.0

Calandra et. al [12] ✓ ✓ 73.1

VTFSA [9] ✓ ✓ 78.1

ConViTac (Ours) ✓ ✓ 84.3

where epi represents the i-th projected feature in the batch,
and τ represents the temperature parameter that scales the
logits. We set the diagonal elements of S to −∞ to prevent
self-similarities. Notably, we utilize DINO [10] as Ec.

Consequently, we freeze this pretrained Ec during the
following training, and utilize it to project both visual and
tactile data into a shared feature space to get unified latent
representations. We take the projected contrastive embed-
dings ep as a condition to control the coupling in feature
fusion through cross-modal attention [11].

III. EXPERIMENTS

We evaluate our approach on the following tasks: 1)
material property identification, specifically i) material classi-
fication, ii) discrimination between hard versus soft surfaces,
and iii) distinction between smooth versus textured surfaces,
and 2) robot grasping success prediction. We utilize the
Touch and Go [5], the Feeling of Success [12], and the
ObjectFolder Real [13] datasets in our experiments. We
conduct our experiments on an NVIDIA RTX 3080Ti GPU,
with a batch size of 16, using the Adam [14] optimizer for
model training. The initial learning rate was set at 0.1, with
the models typically converging within 30 epochs for each
task and dataset, and the number of patches P was fixed at
16. For baseline implementations, we followed the original
papers’ specifications. Model performance was evaluated
using accuracy (Acc).

Our ConViTac demonstrates superior performance across
multiple datasets, outperforming both contrastive and super-
vised learning baselines by significant margins (from 11.4%
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Fig. 2. Visualization for the effectiveness of our CEC mechanism using
Grad-Cam [4] with highlights in red boxes. With CEC mechanism, our
ConViTac pays more attention to potential contacting areas for both visual
and tactile modalities, promoting their connectivity and thereby enhancing
the effectiveness of visual-tactile feature fusion. In visual data, ConViTac
identifies touching areas in the Touch and Go dataset [5], grasp points in the
Feeling of Success dataset [12], and potential contact areas corresponding to
tactile data within objects in the ObjectFolder dataset [13]. For tactile data,
ConViTac with CEC mechanism also focuses more precisely on contact
areas.

to 33.7% on Touch and Go and from 12.0% to 30.4%
on ObjectFolder Real). This exceptional performance can
be attributed to our unique approach of projecting visual-
tactile inputs into latent embeddings as conditioned signals,
combined with a hybrid learning strategy. Unlike traditional
methods that rely solely on either contrastive or supervised
learning, ConViTac leverages both paradigms by utilizing
a pretrained contrastive projection encoder for feature-level
optimization while maintaining cross-entropy loss for direct
prediction error measurement.

IV. CONCLUSION

In this paper, we introduce ConViTac, a novel visual-tactile
representation learning framework designed to align visual-
tactile fusion with contrastive representations. To be specific,
we present the Contrastive Embedding Conditioning (CEC)
mechanism that leverages a contrastive encoder pretrained
through self-supervised contrastive learning to project visual
and tactile inputs into unified latent embeddings. These
embeddings are used to couple visual-tactile feature fusion
through cross-modal attention, aiming at aligning the unified
representations and enhancing performance on downstream
tasks. We conducted extensive experiments on material iden-
tification and grasping prediction datasets, demonstrating the
superiority of ConViTac over SoTA baselines.
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