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Fig. 1: VISK uses AnySkin with a simple transformer-based
architecture to solve precise, contact-rich tasks.

I. INTRODUCTION

Humans effortlessly perform precise manipulation tasks in
their everyday lives, such as plugging in charger cords, or
swiping credit cards – activities that demand exact alignment
and involve constrained motion. While the role of tactile
feedback for robust execution of precise skills in humans is
widely acknowledged [1, 2], analogous capabilities in robotic
policies have lagged behind their vision-based counterparts.

In this work, we present Visuo-Skin (VISK), a simple
framework for training precise robot policies using skin-
based tactile sensing. VISK uses a simple visuotactile
policy architecture that incorporates tactile signals from
AnySkin [3], an affordable magnetic tactile sensor demon-
strated to provide spatially continuous, low-dimensional (15-
dimensional) sensing while being replaceable, making it
well-suited for policy learning applications. The VISK policy
builds upon the BAKU [4] architecture, which enables policy
learning across multiple camera views and tasks. Through
VISK, we demonstrate that simply incorporating a tactile
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token obtained from a tactile encoder into state-of-the-art vi-
sual policy learning architectures enables effective visuotac-
tile policy learning for precise real-world manipulation tasks
that require visual as well as tactile inputs for localization.
Furthermore, using a low-dimensional sensor like AnySkin
allows policies to be learned end-to-end without requiring
any task-specific preprocessing [5, 6] of the tactile input or
pretraining [7, 8]. To the best of our knowledge, this work
presents the first visuotactile framework enabling robots to
perform precise contact-rich manipulation skills with policies
that generalize across spatial variations while requiring a
small number of robot demonstrations (< 200).

To demonstrate the effectiveness of VISK, we run exten-
sive experiments on four precise manipulation tasks using a
real-world xArm robot - plug insertion, card swiping, USB
insertion, and bookshelf retrieval. Our main findings are:
1) Policies trained with VISK using skin-based tactile sens-

ing exhibit an overall 27.5% absolute improvement in
performance compared to vision-only models across 4
precise manipulation tasks (Section III-A).

2) Policies trained with the AnySkin tactile sensor [3]
outperform those using optical tactile sensors such as
DIGIT [7] by at least 43% on two real-world tasks, high-
lighting the benefits of skin-based sensors for visuotactile
policy learning (Section III-B).

Videos and code for training and evaluation are available at
https://visuoskin.github.io/.

II. VISUO-SKIN POLICY LEARNING (VISK)

VISK employs AnySkin [3], a skin-based magnetic tactile
sensor shown to yield consistent tactile measurements reli-
ably under various conditions. It builds upon state-of-the-art
approaches to visual policy learning [4] by incorporating a
tactile encoding stream, allowing the network to profitably
learn from multimodal visuotactile data. Below, we describe
the components of our method.

A. Data Collection

We use a VR-based teleoperation framework [9] em-
ploying the Meta Quest 3 headset to collect xArm data
for our real world experiments. Drawing from prior work
demonstrating the benefits of adding noise to demonstrations
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TABLE I: Success rates (out of 10) averaged over three seeds for policies trained on four tasks: Plug Insertion, USB Insertion,
Card Swiping and Book Retrieval. VISK policies are highlighted in grey.

Tactile
Sensor

Input Modalities Policy performance

3rd Person
Camera

Wrist
Cameras

Robot
Proprio

Plug
Insertion

USB
Insertion

Card
Swiping

Book
Retrieval

None

✓ ✗ ✗ 0.0± 0.0 0.7± 0.6 3.3± 1.6 2.0± 1.0
✓ ✗ ✓ 0.0± 0.0 0.0± 0.0 3.0± 1.0 0.6± 0.5
✓ ✓ ✗ 3.6± 0.5 2.3± 2.0 1.3± 0.5 3.3± 1.1
✓ ✓ ✓ 1.0± 1.0 2.0± 1.0 3.0± 1.7 2.3± 1.5

✓ ✗ ✗ 2.3± 1.1 2.0± 1.0 7.0± 1.7 3.6± 2.5
✓ ✗ ✓ 1.3± 0.5 1.0± 1.0 2.6± 1.5 2.6± 0.5
✓ ✓ ✗ 6.6± 1.5 5.6± 1.5 1.0± 1.0 5.3± 2.0

AnySkin
(VISK)

✓ ✓ ✓ 3.6± 1.5 2.0± 1.0 3.0± 1.7 4.6± 2.0

DIGIT ✓ ✗ ✗ 2.3± 0.5 0.0± 0.0 N/A N/A
✓ ✓ ✗ 1.6± 1.5 0.3± 0.5 N/A N/A

for policy learning [10, 11], we add a uniformly sampled
angular perturbation to the direction of the commanded
robot velocity during teleoperation, increasing the diversity
of contact-rich signals in the dataset by rendering the tasks
slightly more challenging for the human operator.

B. Policy Architecture

The VISK policy builds on top of BAKU [4], a state-
of-the-art transformer-based policy learning architecture that
learns visual policies across multiple camera views. We en-
code the visual inputs using a modified ResNet-18 [12] visual
encoder. Low-dimensional tactile inputs from the AnySkin
sensor are encoded with a two-layer multilayer perceptron
(MLP). The encoded representations for each modality are
projected to the same dimensionality to facilitate combining
modalities in the observation trunk. Some of the comparisons
in Section III use DIGIT sensors and robot proprioception as
inputs to the policy. In line with prior works [13, 14], tactile
images from the DIGIT sensor are encoded using the same
ResNet-18 encoder as the visual data. The encoded inputs
from all modalities along with a learnable action token are
passed through a transformer decoder network [15]. A de-
terministic action head is used to predict the action from the
action feature. We follow prior work [4, 16, 17] and include
action chunking and exponential temporal smoothing [16]
to counteract the covariate shift often seen in the low-data
imitation learning regime.

III. EXPERIMENTS

We study the effectiveness of the VISK framework in a
policy learning setting using behavior cloning. Our experi-
ments are designed to answer the following questions:
• How does VISK perform on precise manipulation tasks?
• Does VISK’s use of AnySkin improve over DIGIT [7]?

A. Performance of VISK policies

We evaluate the performance of VISK policies on the
aforementioned precise manipulation tasks in real world. For
each evaluation, we train policies across 3 random seeds and
conduct 10 trials per seed for 30 trials. We report aggregated

success rate across seeds in Table I, and find that VISK
policies consistently outperform variations across tasks.

Additionally, we observe that VISK policies exhibit emer-
gent seeking behavior. For plug and USB insertion, and card
swiping, we find that the policy first gets close to the location
of the target, makes contact, and proceeds to move around
as it tries to find the target. Similarly, for the book retrieval
task, VISK policies apply a controlled downward force that
enables them to pivot the book to an appropriate tilt, followed
by grasping and retrieval.

B. Comparison between AnySkin and DIGIT

To further demonstrate the effectiveness of AnySkin for
precise manipulation tasks, we collect demonstration datasets
for two tasks (Plug Insertion and USB Insertion) using
DIGIT sensors instead of AnySkin sensors. We keep the
same policy architecture, except for the tactile encoder,
where we replace the MLP with a modified ResNet-18 en-
coder. We ensure the DIGIT and AnySkin datasets are closely
aligned, maintaining the same test positions. The results in
Table I compare VISK using the skin-based AnySkin sensor
with the optical DIGIT [7] sensor. Our findings show that
policies trained with AnySkin significantly outperform those
trained with DIGIT. This difference arises from DIGIT’s
lower sensitivity, which hinders detection of small tactile
signals from contact with objects.

IV. CONCLUSIONS

In this work, we presented Visuo-Skin (VISK), a simple
yet effective framework that leverages low-dimensional skin-
based tactile sensing for visuotactile policy learning in the
real world. Our results demonstrate the efficacy of VISK
across a diverse range of precise, contact-rich manipulation
tasks. The overall performance (65%) suggests potential
for further enhancement through fine-tuning the VISK pol-
icy using reinforcement learning techniques. Further, the
unexpected result of robot proprioception not improving
performance warrants further investigation and presents an
interesting direction for future research. We believe that
VISK presents a signficant step in the right direction for
advancing visuotactile policy learning in robotics.
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