
TransForce: Transferable Force Prediction for
Vision-based Tactile Sensors with Sequential Image Translation

Zhuo Chen, Ni Ou, Xuyang Zhang and Shan Luo

Abstract— Vision-based tactile sensors (VBTSs) provide high-
resolution tactile images crucial for robot in-hand manipulation.
However, force sensing in VBTSs is underutilized due to the
costly and time-intensive process of acquiring paired tactile
images and force labels. In this study, we introduce a transfer-
able force prediction model, TransForce, designed to leverage
collected image-force paired data for new sensors under varying
illumination colors and marker patterns while improving the
accuracy of predicted forces. Our model effectively achieves
translation of tactile images from the source domain to the
target domain, ensuring that the generated tactile images reflect
the illumination colors and marker patterns of the new sensors
while accurately aligning the elastomer deformation. As such,
a recurrent force prediction model trained with generated
sequential tactile images and existing force labels is employed
to estimate forces for new sensors with lowest average errors
of 0.69N (5.8% in full work range) in x-axis, 0.70N (5.8%) in
y-axis, and 1.11N (6.9%) in z-axis.

I. INTRODUCTION

Fig. 1. Transferable force prediction model for VBTSs.

Vision-based tactile sensors [1] have now been widely
used in robot manipulation. By measuring high-resolution
tactile images, robots equipped with VBTSs are endowed
with the sense of touch to complete in-hand tasks with
human-like dexterity, such as slip detection [2] and dexterous
manipulation.

Recently, deep learning models [3] are developed to map
tactile images to force values without the aid of a physical
model. Training these image-force mapping models requires
a substantial amount of paired image-force data, along with
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costly calibration instruments like 6-DoF force/torque sen-
sors. This labor-intensive data collection process must be
repeated frequently due to wear and tear of soft elastomer
and changes in sensor components, such as camera and LED.
Therefore, there remains a demand for a transferable force
prediction method with high-accuracy for VBTSs that can
effectively predict both normal and shear forces.

In this study, we propose a novel transferable model,
TransForce, to address the challenge of unsupervised adap-
tation in force prediction for VBTSs. As illustrated in Fig. 1,
TransForce translates the style of tactile images from a source
domain, where force labels are available, into the target
domain, representing new sensors. This process successfully
preserves the sequential deformation information from the
source domain while adapting image properties, such as
illumination color, intensity, and marker pattern, to the target
domain. Consequently, a recurrent force prediction model
can be trained using the generated sequential tactile images
and existing force labels, enabling accurate force estimation
with tactile images from new sensors.

II. METHODOLOGY

In this problem, we are given two sets of tactile data from
two VBTSs shown in Fig. 1: one that has pairs of tactile
images and forces {Iis,Fi

s}
ns
i=1, named source domain S, and

the other one that only has tactile images {Iit}
nt
i=1, named

target domain T . The goal is to align the image styles of Is
and It so that we can map Is to Ît, which shares the same
style with It. To this end, we can use the image-force pairs
{Îit,Fi

s}
ns
i=1 derived from S to train a mapping function ϕ̂.

This function ϕ̂ is able to estimate forces {Fi
t} in T using

the tactile images {Iit}
nt
i=1.

III. DATA COLLECTION AND IMPLEMENTATION

As illustrated in Fig. 2a, the real-world setup for collecting
tactile image and force pairs comprises five main compo-
nents. Before data collection, we fabricate two GelSight
sensors using the same silicone elastomer (XP-565, ratio A:B
= 1:15, size 10×8 mm2, thickness 3 mm), but with different
marker patterns and illumination colors. We employed five
contact points on the surface due to a larger size of 3D-
printed indenter, which adequately contacts the entire surface
of soft elastomer. The contact motion was divided into four
stages: downward movement, horizontal movement, inverse
horizontal movement, and upward movement. The normal
force range was from -16 N to 0 N, while the shear force
range was from -6 N to 6 N.



Fig. 2. Real-world setup for data collection.

IV. EXPERIMENTAL RESULTS

A. Image Translation Result

Fig. 3a and Table I demonstrates the image translation
results. In seen group, the generated tactile images Ît closely
match It in illumination colors and marker patterns, resulting
approximately four times similarity on FID and KID when
comparing Is with It and comparing Is with Ît. To test the
generalizability, we evaluate the model on the unseen group
shown in Fig. 3a, which includes 6 indenters with varying
aspect ratios and shapes. The results demonstrate that the
model effectively translates marker patterns and illumination
colors.

TABLE I
IMAGE TRANSLATION EVALUATION

group Is - It Is - Ît It - Ît
FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

seen 81.1 0.126 85.4 0.133 18.3 0.019
unseen 87.9 0.134 92.4 0.144 21.3 0.021

Fig. 3. Visualization of tactile image translation.

B. Force Prediction Result

Results from the seen group are presented in Table II.
Fig. 4 illustrates the half-violin distributions of force error
within four force ranges by using Transforce model with
LSTM in seen group. When using the source-only method,
whether with or without the LSTM module (η0rm(It) and
ηrm(It)), the predicted forces exhibit significant errors, as

Fig. 4. Force prediction performance.

TABLE II
FORCE PREDICTION PERFORMANCE IN SEEN GROUP

NOTE: error IS CALCULATED WITH MAE WITHIN FULL FORCE RANGE

Method Image Type Fx Fy Fz Total Force
error(N) ↓ R2 ↑ error(N) ↓ R2 ↑ error(N) ↓ R2 ↑ error(N) ↓

Source-only
(lstm)

R 1.528 -0.25 1.14 0.04 3.085 -0.25 2.869
M 2.811 -2.28 1.267 -0.01 2.521 -0.71 2.771

R+M 2.425 -1.56 1.092 0.19 3.623 0.12 3.606

TransForce
(nolstm)

R 1.034 0.38 0.953 0.31 1.42 0.68 1.452
M 0.731 0.67 0.754 0.62 1.462 0.64 1.495

R+M 0.891 0.55 0.994 0.3 1.312 0.71 1.424

TransForce
(lstm)

R 1.023 0.42 1.014 0.26 1.221 0.76 1.283
M 0.695 0.69 0.701 0.66 1.34 0.68 1.384

R+M 0.771 0.65 0.899 0.43 1.112 0.79 1.197

indicated by negative R2 values in both normal and shear
directions. In contrast, the TransForce model shows marked
improvements. For the predicted force accuracy of ϕ̂rm(It),
the error in shear direction is 0.771 N (6.4% of the full
range) in the x-axis and 0.899 N (7.5%) in the y-axis. For
the normal direction, the force prediction error is 1.112 N
(6.9%). These results validate the efficacy of the model in
predicting forces accurately, especially for shear forces, even
with expanded force ranges and diverse indenter types.

V. CONCLUSION

In this study, we propose a novel transferable model to
address the challenge of unsupervised force prediction for
VBTSs. Our approach effectively performs tactile image
translation, transforming images from existing sensors to
new sensors for leveraging collected force labels. A force
prediction model that operates on sequential tactile images
demonstrates superior force prediction accuracy over models
trained with single image in both normal direction and
shear direction. Owing to the generalization performance of
generative model, this method is versatile and applicable to
various types of VBTSs.
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