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Abstract— High-resolution visuotactile sensors provide de-
tailed contact information that can infer the physical properties
of objects in contact. This paper introduces a novel technique
for high-resolution stiffness estimation of heterogeneous de-
formable objects using the Punyo bubble sensor. We developed
an observation model for dense contact forces to estimate
an object’s stiffness using a visuotactile sensor and a dense
force estimator. Additionally, we propose a neural Volumetric
Stiffness Field (VSF) formulation that represents stiffness as a
continuous function, which allows dynamic point sampling at
visuotactile sensor observation resolution. The neural VSF ef-
fectively reduces artifacts commonly found in traditional point-
based methods, especially in heterogeneous stiffness estimation.
We incorporate a triangle mesh of the object to guide stiffness
field estimation and utilize rigid-body tracking to integrate
multiple visuotactile sequences from different touches on a
movable object. These techniques significantly improve the
quality and completeness of VSF estimation.

I. INTRODUCTION

Tactile perception of physical properties, such as stiffness,
is crucial for tasks including manipulation in clutter [1] and
deformable object packaging [2]. Recent advances in vision-
based tactile sensors capture high-resolution tactile images
by observing the deformation of media like gels [3] or
bubbles [4] using embedded cameras. These high-resolution
tactile observations provide detailed contact information and
are promising for fine-grained texture recognition and ma-
terial parameter estimation. However, the vast majority of
prior work in tactile sensing considers contact with rigid
objects [5], [6]. Deformable objects undergo deformation in
a manner that is coupled to the sensor medium, and material
parameter estimation requires simultaneous understanding of
both object and sensor geometry, as well as their respective
deformations [7]. Moreover, many objects of interest for
high-resolution tactile sensing are heterogeneous, with a mix
of hard and soft parts, such as bagged objects or localization
of hard tissues underneath soft tissues in palpation. Existing
identification techniques based on analytical models, e.g.,
finite element models (FEM), do not scale easily to large
numbers of material parameters and handling deformable-
deformable contact can be challenging [8].

In this paper, we propose a system that captures both tac-
tile models for objects composed of complex, heterogeneous
materials. Our approach is based on the Volumetric Stiffness
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Fig. 1. Our method estimates a high-resolution stiffness field of a
deformable object using a visuotactile sensor. The estimated stiffness field
can simulate contact forces for novel touches and the deformation of the
visuotactile sensor upon contact with the object.

Field (VSF), a high-capacity model designed to represent
heterogeneous material distributions [9], [10]. Specifically,
we introduce neuralVSF, a neural-based tactile simulation
acquisition system that learns from real-world tactile data
to generate high-fidelity simulation assets. In summary, this
paper has the following contributions: 1) We formulate an ob-
servation model for dense force estimation using visuotactile
sensors combined with the VSF tactile model; 2) We propose
a novel neural VSF tactile model capable of capturing high-
resolution stiffness variations using a continuous function.

II. METHOD

The input to our systems includes a volume containing
the object, a set of trajectories from a high-resolution tactile
sensor, and the corresponding sequences of sensor readings.
We assume that the visuotactile sensor readings are dis-
placements of the contact surface, and we have access to
a calibrated FEM model of the tactile sensor that relates
contact forces to these displacements. The object is assume
to have elastic deformation. Our high-resolution VSF tactile
estimation system, built on a visuotactile sensor, consists of
four key components: a dense contact force estimator using
[11], a VSF representation, a dense contact force observation
model for the VSF, and a VSF estimation algorithm. To
enhance material estimation quality, we incorporate object
geometry information, significantly improving the results. To
integrate tactile data of a movable object, we employ 6DoF
tracking to transform touch data into the object’s local frame,
enabling a more complete estimation of neuralVSF.

Continuous VSF model. Our key innovation is to treat
the stiffness as a continuous field K(·) : Ω → R+, where
we can dynamically sample points at visuotactile sensor
force estimation resolution. For a tiny volume dV centered
around p ∈ Ω, there exists a Hookean spring with stiffness
K(p)dV . When the robot pushes through this volume, the
object deforms according to a time-dependent continuous
deformation field u(p, t) : Ω× R → R3.
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Fig. 2. Qualitative stiffness estimation comparison of Pressure-only, Point-based VSF, and Neural VSF using dense force estimation. Following partial
coverage, the left columns show the estimated stiffness using top-down touches on the object. The right two columns demonstrate improved Neural VSF
estimation with an SDF mask and multiple touches from different directions for complete coverage.

Dense force observation model for continuous VSF. The
continuous stiffness field enables direct evaluation of dense
contact forces using volumetric integration. We assumes
dense contact forces are estimated on the surface of the
visuotactile sensor as a triangle mesh. For each vertex k,
moving along its trajectory vk(t) : R → R3, we expect the
VSF contact force f̂v,k(t) is the integration of all Hookean
springs within its swept volume Ωk.

f̂v,k(t) =

∫
Ωk

−K(p)u(p, t)dV

=

∫ vk(t)

vk(0)

−K(vk(τ))u(vk(τ), t)sk(τ) · dvk(τ)

≈
N∑
i=1

−K(vk(τi))u(vk(τi), t)sk(τi) · δvk(τi).

(1)

where K(vk(τ)) represents the local stiffness at the vertex,
and u(vk(τ), t) denotes the deformation at the vertex position
vk(τ) over time. Here the continuous line integration for
f̂v,k(t) is approximated by sampling points along vertex tra-
jectories from 0 to time t, where δvk(τi) = vk(τi)−vk(τi−1)
is the deformation.

Continuous VSF instantiation and training. We instan-
tiate the continuous VSF using a NeRF-like neural network
as K(p) = gψ(p) : R3 → R+. The network gψ has
an 8-layer architecture with sinusoidal position encoding
functions, similar to NeRF [12], to capture high-frequency
details of the objects. We optimize ψ by minimizing the
following loss function on dense contact forces:

ℓ(ψ) =

B∑
i=1

||f tiv,ki − f̂v,ki(ti)||2 + λ
1

nreg

nreg∑
i=1

K(pi) (2)

Neural VSF is trained over multiple touch sequences that
touch the object at different locations. We used the Adam op-
timizer [13] and batched force observations. Here, the second
term is a free space regularization term that encourages the
neural network zero stiffness outputs in untouched regions.
This regularization is implemented by randomly sampling
nreg points within the bounding box and applying a small
penalty to their stiffness values.

Improve NeuralVSF quality and completeness. Noisy
dense contact forces estimation causes the VSF to show non-

zero stiffness near the object boundary, while neural net-
works tend to smooth object edges. To solve these problems,
we utilize the object’s SDF as a geometric mask for the
VSF by enforcing zero stiffness for points outside the object,
formulated as K(p) = Isdf(p)<0 ·gψ(p). This ensures that the
VSF produces sharp edges at the object boundary.

For objects placed on a table, we can only touch them
from the top down, leading to incomplete estimations. The
objects are freely placed on the table, and we use Foundation-
Pose [14] to track their translation and rotation during data
collection. The observed contact forces are then transformed
into the object’s local frame to reconstruct the VSF model.

III. EXPERIMENTS AND RESULTS

Setup and baselines. We evaluate VSF variants on het-
erogeneous stiffness estimation with different shoes, each
with higher stiffness in the toe and bottom region and lower
stiffness in the tongue region. We compare three different
VSF formulations, including the pressure-only method men-
tioned above, point-based VSF and neural VSF. For both the
pressure-only model and the point-based model, we generate
20,000 VSF points from RGBD image. For neural VSF, the
bounding box of the object is used to define object space.

Results. The stiffness estimation results are illustrated in
Fig. 2. When comparing the point-based VSF to the neural
VSF, it is evident that the point-based method exhibits more
artifacts. With an SDF mask and multiple touch poses, neural
VSF produces a more complete and higher-quality stiffness
field that better respects object geometry.

IV. CONCLUSION AND FUTURE WORK

In summary, this paper proposes a system designed to
capture tactile models for deformable objects using visuotac-
tile sensors. Our approach builds upon neural VSF method,
which captures the heterogeneous material properties of
deformable objects. We validated our system on objects
made of heterogeneous materials. The estimation quality and
completeness improved further by incorporating geometry in-
formation and tactile inputs from multiple directions. Moving
forward, we plan to open-source high-quality tactile models
to support the research community.
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