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DartBot: Overhand Throwing of Deformable Objects with Tactile
Sensing and Reinforcement Learning
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Abstract—Object transfer through throwing is a classic
dynamic manipulation task that necessitates precise control
and perception capabilities. However, developing dynamic mod-
els for unstructured environments using analytical methods
presents challenges. In this study, we present DartBot, a robot
that integrates tactile exploration and reinforcement learning
to achieve robust throwing skills for nonrigid relatively small
objects under the influence of moment of inertia which cause the
object to spin in the air. Unlike traditional sim-to-real transfer
methods, our approach involves direct training of the agent on
a real hardware robot equipped with a high-resolution tactile
sensor, enabling reinforced learning in a realistic and dynamic
environment. By leveraging tactile perception, we incorporate
pseudo-embeddings of the physical properties of objects into
the learning process through tilting actions at two distinct
angles. Furthermore, we demonstrate that the quality of a
grasp significantly impacts the success rate of the throwing
task. We evaluate the effectiveness of our method through
extensive experiments, demonstrating superior performance and
generalization capabilities in real-world throwing scenarios. We
achieved a success rate of 95% for unseen objects with a mean
error of 3.15 cm from the goal.

I. INTRODUCTION

Throwing manipulation is a fundamental human motor
skill [1] with applications in sports and industrial automa-
tion [2]. It enables robots to transport objects beyond their
kinematic limits by leveraging dynamic extrinsic dexterity.
However, achieving accurate object throws is challenging due
to multiple factors, including mass, center-of-mass, friction,
softness, shape, and aerodynamics. The difficulty increases
with non-rigid objects, which are common in daily life, mak-
ing precise control and manipulation crucial for successful
throwing tasks.

Despite growing research on throwing manipulation [3],
[4], most efforts focus on underhand throws of rigid objects.
To our knowledge, no prior work has explored overhand
throwing tasks. Moreover, integrating tactile perception and
reinforcement learning (RL) for enhancing robotic throwing
remains underexplored.
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Fig. 1: Throwing object with precision: an example scenario of throwing
a nonrigid cylindrical object beyond a robot’s workspace by executing
an overhand throw trajectory while the object spins in the air due to its
moment of inertia. We develop a reinforcement learning-based method using
a GelSight Mini tactile sensor, allowing the robot to utilize tactile feedback
to perceive object properties and determine optimal throw parameters. The
bottom left image shows the gripper with the tactile sensor grasping the
nonrigid object’s deformable shaft.

Unlike vision-based methods, which have shown promise
in dynamic object representation [5], our approach exclu-
sively utilizes tactile feedback to incorporate object-centric
information. Vision-based methods remain constrained to
structured environments and face challenges in real-world
deployment, whereas tactile sensing provides a robust alter-
native for object interaction.

To the best of our knowledge, this study is the first
to address high-speed overhand throwing manipulation on
a real robot by integrating tactile sensing and reinforce-
ment learning. We propose TT-RL, an RL framework that
leverages high-resolution tactile feedback to develop precise
throwing skills. Our method enables the transfer of small
nonrigid objects beyond the robot’s workspace, achieving
high accuracy with mean errors of 2.20 cm for seen objects
and 3.15 cm for unseen objects.

II. METHODOLOGY

The aim of DartBot is to make a robot arm capable
of throwing arbitrary nonrigid objects, under the influence
of moment of inertia, to a target location with a single
subsequent exploratory action, illustrated in Fig. 1.
1) Preliminaries: We aim for the robot to complete the task
by first grasping the dart and obtaining its physical properties
through tactile sensors using two different grasping poses.
Upon reaching the designated pose, the gripper’s opening
width is adjusted empirically, enabling in-hand manipulation
of the dart. This imparts an initial rotational speed, allowing
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TABLE I: Experiment results of learned robot overhand throwing skills with generalization to varying robot-to-target distance (mean score 0.79, mean
distance from goal 3.15cm).

Object #
Distance between target and robot (cm)

155 162 170 173 176 182

Score Success
times

Score Success
times

Score Success
times

Score Success
times

Score Success
times

Score Success
times

1 0.80 18/20 0.77 18/20 0.89 20/20 0.86 20/20 0.82 20/20 0.84 19/20
2 0.72 16/20 0.71 17/20 0.83 18/20 0.81 18/20 0.76 19/20 0.78 19/20
3 0.77 17/20 0.75 19/20 0.85 20/20 0.84 20/20 0.83 20/20 0.83 20/20
4 0.76 18/20 0.74 17/20 0.86 20/20 0.83 19/20 0.81 20/20 0.82 20/20
5 0.71 16/20 0.69 16/20 0.78 17/20 0.77 19/20 0.72 19/20 0.75 18/20

it to travel further, as shown in Fig. 3. The camera records
the dart’s position only when it hits the target at the correct
angle. We employ the TD3 method for online reinforcement
learning training, where the MDP process consists of a series
of dart-throwing actions, as shown in Fig. 4. The final reward
is defined by the dart’s landing position, while the actions
include the end-effector’s grasping motion, the robot base
joint angles, and the timing of the dart’s release by the
gripper. These actions influence whether the dart hits the
target with the correct pose, its flight distance, and its final
landing position.
2) Experiments and benchmarks: Our experiment utilizes
online reinforcement learning, with a platform enabling the
robot to cycle through grasping, throwing, and retrieving the
dart, improving training efficiency. We tested various darts
and different distances between the robot and the target.
As shown in Figure 2, by replacing the three modular
components, we obtained darts with varying lengths, centers
of mass, and weights. These darts have a magnetic head and
a deformable mesh tail. We also evaluated the performance
of other grippers. Common UR5 robotic grippers, equipped
with force sensors, failed the task due to the minimal gripping
force required for the dart. Additionally, since the mass
variation among different darts is small (only 0.3g–0.5g), we
compared a pre-trained ResNeXt network in the CNN method
with our CNN-based improved approach. Our method in-
creased classification accuracy by more than 10%.
3) Results: Experiments show that our method achieves
excellent results compared to several mainstream approaches,
as shown in Table I. The five template objects alongside the
six distinct robot locations relative to the dartboard yield a
total of 30 cases. The 24 unseen scenarios assess the learned
policy’s performance. The average success rate is 95%, with
a mean distance from the goal of 3.15 cm.

III. CONCLUSION

We developed and implemented the TT-RL framework to
train a real robot in overhand throwing, focusing on small
objects with a deformable shaft and rigid head. The key
challenge was achieving precise throws despite unpredictable
post-release spins and variations in object properties. Using
high-resolution tactile sensing, our method demonstrated
strong generalization across different objects and target dis-
tances, highlighting its real-world potential. Currently, TT-RL
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Fig. 2: For our experiments, we used template objects with three parts: a
rigid purple head, a magnetic face with a magnet in the yellow top, and
a flexible yellow mesh shaft. The objects within the blue dashed box are
unseen to the agent.
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Fig. 3: The robot grasps the dart with a two-fingered gripper and a GelSight
Mini sensor, maintaining the hold from pickup to the throwing pose. The
gripper adjusts its width to manipulate the dart, allowing it to rotate left
under gravity.
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Fig. 4: The Actor and Critic neural network models in Twin Delayed Deep
Deterministic Policy Gradient (TD3). The actor network takes a 24 × 1 obs
vector consisting of tactile features obtained after two tilt motions and the
previous timestep’s action space parameters as input, producing action space
elements as output. The critic network takes the obs vector and action space
as inputs and outputs learned policies Qϕ1

and Qϕ2
.

focuses on dart-throwing to study overhand dynamics, laying
the foundation for broader applications.
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