
  

 
Figure 1. Overview of how plantar pressure data can be 
used to estimate human kinematics and inform humanoid 
robotic locomotion.  

  

I. INTRODUCTION 

Humans naturally distribute pressure across their feet to 
move efficiently across diverse terrains. Sensory feedback 
from plantar pressure plays a crucial role in maintaining 
balance, adjusting posture, and optimizing movement [1]. 
This feedback allows for fine motor control, enabling 
dynamic adaptations to varying surface conditions, inclines, 
and perturbations [1]. Likewise, robots could benefit from 
high-resolution plantar pressure sensing to enhance stability 
and adaptability, particularly in unstructured environments. 
However, despite its importance, there is a significant lack of 
high-quality datasets linking plantar pressure with joint 
kinematics, especially in real-world conditions such as 
uneven or deformable terrain. Understanding this relationship 
could enable predictive models for human biomechanics and 
inform robotic locomotion strategies. 

Previous studies have attempted to correlate plantar 
pressure with human motion kinematics, but they face several 
limitations. Many rely on sparse, low-resolution pressure 
sensors that fail to capture fine-grained pressure distributions 
[2-3]. Others estimate joint kinematics indirectly using 
external motion capture systems, imus, or force plates in 
controlled lab settings, which do not fully reflect natural 
locomotion [4-6]. These limitations hinder the development 
of robotic systems that can leverage plantar pressure sensing 
for real-time locomotion adaptation. 

To address this gap, we developed a high-density (HD) 
plantar pressure sensor with 1024 sensing elements, enabling 
precise spatial and temporal resolution of foot-ground 
interactions. Using this sensor, we can collect an extensive 
dataset of human locomotion, including walking and running 
at different speeds on various surfaces. We can then train a 
predictive model capable of estimating joint kinematics 
directly from plantar pressure measurements with high 
accuracy. As a proof of concept, we trained a Gaussian 
mixture model on plantar pressure data and joint flexion 
angles from a human walking at three different speeds and 
accurately estimated the joint flexion angles to within an 
error of about 1° for each joint. 

This work lays the foundation for using plantar pressure 
sensing not only as a biomechanical research tool but also as 
a key modality for robotic control. Our next step is to apply 
this methodology to robotic locomotion, training models that 
enable robots to dynamically distribute pressure across their 
feet to optimize balance and movement efficiency. By 
integrating high-resolution pressure sensing with adaptive 
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control strategies, we aim to develop robots capable of 
navigating complex terrain with human-like agility, 
ultimately improving their safety and versatility in real-world 
applications. 

II. METHOD 

We built a HD sensor using two fPCBs that sandwiched a 
piezoresistive fabric (Velostat). The top fPCB had of 64 rows 
of copper traces and the bottom fPCB had 16 columns of 
copper traces. Each intersection of a column and row formed 
a tactile sensing element, or taxel, which meant our sensor 
was made up of 1024 taxels. The sensor readout was 
implemented using a conventional zero-potential resistive 
sensor array readout circuit [7]. The measurement of the 
sensor was done using an ESP32 microcontroller which, 
along with the measurement circuit, was powered by a 500 
mAh LiPo battery and sampled the sensor at 40 Hz. The 
sensor was cushioned with adhesive foam (NATGAI Sponge 
Neuprene with Adhesive Foam Rubber Sheet) applied above 
and below the sensor to create the insole, protecting it from 
repetitive impact. The insole was placed inside a shoe with 
the readout board attached to the side with a 3D printed box 
for testing 

To train and test our model, we had four subjects walk on 
an instrumented treadmill with a VICON motion capture 
system while wearing a shoe with our sensor at 3 different 
speeds (0.75 m/s, 1.0 m/s, and 1.5 m/s) for 2 minutes each. 
The subjects had IR reflective markers placed throughout 
their body to track the position of their body, and the joint 
flexion angles were computed using the VICON Nexus 
Software [6]. 
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Figure 3. Joint angle reconstruction results. A) Measured 
and estimated joint angles across all speeds. The solid 
lines are the average measured joint angles and the 
dashed lines (not visible due to overlap of solid lines) are 
the estimated joint angles. The lighter shaded areas are 
the range of measured joint angles, and the darker shaded 
areas are the range of estimated joint angles. The red line 
is the time point at which the measured and reconstructed 
legs are plotted in B. B) An example of a measured leg 
(solid line) 0.3 seconds into a step and a reconstructed leg 
(dashed line) from the estimated joint angles at the same 
time step. C) The average RMSE for a generalized and 
subject-specific model for each subject. 

 

The plantar pressure data from the sensor was processed 
by first segmenting out individual strides. A stride was 
defined as starting from a heel strike on one foot and ending 
at the next heel strike on the same foot. The heel strikes were 
identified using a threshold of 10% of the range of the 
average pressure value of the whole sensor. The points that 
crossed the threshold with a positive slope were heel strikes 
and those with negative slopes represented toe-offs. The toe-
off points were used to separate the stance and swing phases 
of the gait. Only the data during the stance phase of each 
stride was used in our kinematic estimation. 

For each stance phase, the following features were 
extracted: peak pressure (PP) coordinate, center of pressure 
(COP) coordinate, contact area (CA), and pressure-time-
integral (PTI). The PP coordinate is the coordinate of the 
sensing element with the highest amplitude. If multiple 
sensing elements have the same peak value, then the average 
position of those elements is taken as the PP coordinate. The 
COP coordinate is the weighted average of the positions of 
all sensing elements with an amplitude greater than 0 
weighted by the amplitude of each element. The CA is the 
number of sensing elements with an amplitude greater than 0. 
The PTI is the area under the curve of the average pressure of 
the sensor over time.  

Gaussian mixture regression (GMR) was used to estimate 
the joint flexion angles of the hip, knee, and ankle using the 
features extracted from the sensors. A Gaussian mixture 
model (GMM) was created to model the joint probability 
density of joint flexion angles and sensor features as a 
mixture of normal distributions. Once the model has been 
fitted, the joint angles for a given pressure profile can be 
estimated using the conditional probability distribution of the 
joint angles given the features from the sensor [8]. The 
number of distributions, or components, used to create the 
model was selected by calculating the Bayesian information 
criterion (BIC) for a GMM created using 1 to 20 components. 
The BIC evaluates a model’s likelihood and includes a 
penalty for increasing the number of parameters to minimize 
overfitting and improve model efficiency [8]. The number of 
components that produced the lowest BIC was selected as the 
best number of components for our model. Our model was 
implemented in MATLAB using its the fitgmdist function 
from the Statistics and Machine Learning Toolbox to 
calculate the BIC for different numbers of components. Once 
the best number of components was selected, the GMM-
GMR package by Sylvain Calinon [9] was used to train and 
test the GMR. K-fold cross validation with 4 folds and root 
mean square error (RMSE) were used to evaluate the 
performance of the GMR. 

III. RESULTS AND DISCUSSION 

Figure 2A shows the average joint flexion angles from 
Subject 1 for the hip, knee, and ankle across all three speeds. 
The average angle of the hip ranged from -7.0° to 24.4°, the 
angle of the knee ranged from 5.5° to 23.8°, and the angle of 
the ankle ranged from -3.3° to 12.0°. This was the same for 
the measured and estimated joint angles. The average profiles 
of the hip, knee, and ankle are consistent with that of a 
normal gait. The shaded areas show the full range of 
measured and estimated joint angles. The wide range of 
angles was due to the different walking speeds. As the 

walking speeds increase, the angle of the joints in the leg 

change to produce more force in order to push the human 
body forward at a faster rate [10]. This results in different 
joint angle profiles for different walking speeds and different 
pressure profiles measured by our sensor. 

The average RMSE for the generalized model trained on 
all subjects was 3.0° ± 1.5°, with Subject 1 having the least 
error at 1.5° ± 1.0° (Figure 2C). A subject-specific model 
reduced the error by 37%, leading Subject 1 to have an error 
of 0.97° ± 0.39°. An example of the measured position of the 
leg from Subject 1 at 0.3 seconds into a step and the 
reconstructed position of the leg based on the estimated joint 
angles is shown in Figure 2B. While the reconstructed leg is 
close to the position of the measured leg, the slight offset 
shows that the small error in angle estimation can compound 
when reconstructing the position of the leg. Our results show 
that the GMR model was able to accurately estimate the joint 
flexion angles from the pressure data captured by our insole 
when the foot is in contact with the ground. It also 
demonstrates a strong correlation between plantar pressure 
and lower limb movement. However, slight differences 
between individual walking patterns can lead to increased 
prediction errors with a generalized model. This demonstrates 
that there is still room for improvement in our angle 
estimation model. Possible future directions include the use 
of neural networks such as CNNs, LSTMs, or Transformers. 
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