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Abstract— We study the influence of contact information
in solving a high-precision plug insertion using a robot arm
equipped with a dexterous hand. We discover contact-rich,
dexterous behaviors to reorient, grasp, and insert the plug
combining tactile and reinforcement learning (RL) in simulation.
We then distill the RL policy with behavior cloning, and find that
contact information is crucial for efficiently learning behaviors
that transfer well to the real world. We also study and discuss
the importance of exposing the behavior cloning agent to contact
information. Ultimately, we demonstrate a 6x performance
improvement over prior work [1] through our improved behavior
discovery and deployment pipeline.

I. INTRODUCTION

Synthesizing dexterous behaviors for robotic systems with
multi-fingered hands is an important goal, but remains
challenging for several reasons. For one, the lack of intuitive
interfaces for teleoperation [2], [3] renders standard behavior
cloning pipelines insufficient. Reinforcement learning (RL)
offers a promising alternative to autonomously discover these
behaviors, but the exploration problem suffers from high-
dimensional action spaces [4]. In this work, we leverage a
recently proposed method for demonstration-guided RL [1]
to synthesize behaviors to solve a precise, contact-rich plug
insertion task. We investigate the role of contact information in
shaping the behaviors RL discovers. Furthermore, transferring
learned policies from simulation to the real world remains a
major challenge [5]. We examine how contact information
affects sim2real transfer, and explore its potential to bridge
the gap between simulated and real world execution. We
find that contact information is crucial for efficiently learning
behaviors that transfer well to the real world. We also find and
discuss why then there is only a small positive benefit from
also including contact information during policy distillation.

II. METHOD

Behavior discovery with RL. We leverage demonstration-
guided RL [1] to discover behaviors for solving the plug
insertion task (Figure 1). The RL agent is an MPO agent, and
the sparse reward function is a binary success detector for
inserting the plug into the socket. The agent observes: robot
(including hand) joint positions, robot tool center point (TCP)
position and orientation, plug pose, and socket pose. For some
experiments, we also give the agent access to privileged
information like robot joint velocities, hand finger joint
torques, hand finger joint velocities, and commanded finger
joint positions. We consider these observations priviledged
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Fig. 1: Method overview. We train an RL agent to discover
behaviors with access to various types of contact information.
We then distill the behaviors and deploy the policies in the real
world, inferring contact states from onboard tactile sensors.

because although they can be used to infer contact information
in simulation, they are difficult to measure in the real world
or are subject to a large sim2real gap. For a subset of
experiments, we also give the agent access to binary touch
sensors on each of the fingertips. These sensors directly
measure contact interactions and are subject to a small
sim2real gap. The action space of the robot is the 6 degree
of freedom TCP velocity for the robot, and 12 degree of
freedom joint positions for the hand.

Behavior deployment via teacher-student distillation. We
use a teacher-student framework to distill the RL policy to
operate on simulated sensor observations, then directly roll out
the distilled policy in the real world. We use the RL agent to
collect an offline dataset of trajectories, and train the student
with behavior cloning (BC). The BC agent has access to five
cameras (two wrist cameras, and three overhead cameras),
robot proprioception (robot and hand joint positions), and
the robot TCP pose. In a subset of our experiments, we also
give it access to per-finger binary touch.

1) Distillation algorithm: We use ACT [6], with a mod-
ification of the loss function to make it more suitable for
sim2real. Instead of weighting all action predictions in the
chunk equally, we weight by the rollout temporal aggregation
matrix so that immediate predictions are prioritized over future
predictions. Empirically, we observed re-weighting the loss
function with k = −0.5 balances smoothness and precision in
the action predictions. This is useful when the dataset comes
from RL rollouts, which have different characteristics (no
pauses, unimodal behavior) than teleoperated demonstrations.

2) Data mixture and training augmentations: We train on
one million simulated trajectories, where 70% of trajectories



Fig. 2: Contact information is important for discovering
successful behaviors efficiently. The only policy that takes
significantly longer than the others to converge contains no
information from which contact states can be inferred.

are rendered with visual domain randomization and 30% are
rendered with photorealistic rendering using Filament [7]
(see [1] for details on the visual randomization). To improve
sim2real transfer, we found it useful to train with gaussian
noise on the proprioception and images. We also apply 30%
dropout on the images and 10-30% on the touch signals.
Dropping out the touch signals provides robustness against
missed contacts which can occur in sim2real.

III. EXPERIMENTS AND RESULTS

Policy convergence results. We first compare the convergence
rates of the RL policy with four types of contact information:
PRIVILEGED (robot joint velocities, hand finger joint torques,
hand finger joint velocities, and commanded finger joint
positions), TOUCH, TOUCH + PRIVILEGED, and NONE. In
each case, we also expose robot proprioception and the object
poses. We find that contact information is important for
discovering behaviors efficiently (Figure 2), as the only policy
that takes significantly more updates to converge is NONE.

Insertion experiments. We also evaluate the success rate of
a plug insertion task in simulation and the real world. The
task involves inserting the plug from an arbitrary pose in the
basket, which may involve re-orienting the object in-hand
or by leveraging non-prehensile contacts. We consider three
outcomes: success, near success, and failure (Figure 3). In
near successful trials, the robot partially inserts the plug, and
holds the plug partially inserted for the remainder of the
trial. We evaluate two behaviors, TOUCH + PRIVILEGED and
PRIVILEGED, each distilled with and without access to touch
information in the observation.

1) Simulation results: We evaluate the success rate of 100
trials per policy, where each trial lasts 10 seconds. We find
the performance of each policy is similar (Figure 5, right).

2) Real-world experimental setup: We use a Kuka LBR
iiwa 14 robot arm with a three-finger DEX-EE Hand, which
has camera-based fingertip tactile sensors and two wrist
cameras (Figure 4). We detect contact information from the
fingertip tactile sensors by thresholding the average pixel-wise

Fig. 3: Experimental outcomes. We consider three outcomes
for the plug insertion trials: success (left), near success
(middle), and failure (right).

Fig. 4: Experimental setup. We perform a high-precision
plug insertion task using a Kuka LBR iiwa 14 robot arm with
a Dex-EE hand.

difference between observed tactile images and a non-contact
image. We also attach three cameras to the environment. We
evaluate the performance of each policy with 50 real-world
trials, each lasting 30 seconds.

3) Real-world results: We find that TOUCH + PRIVILEGED
is the more robust behavior, resulting in 88% successful or
near successful trials when distilled with touch, and 86% when
distilled without touch (Figure 5). We find that the policy
performance is not strongly influenced by the inclusion of
touch during distillation. The intuition behind this unexpected
finding is that including touch during RL behavior discovery
tends to produce intrinsically robust strategies for grasping,
which requires less of touch sensing during execution.

The PRIVILEGED (no touch) behavior, on the other hand,
results in 68% successful or near successful trials when
distilled with touch, and 54% when distilled without touch
(Figure 5). We see a larger performance boost when including
touch as an observation during distillation (Figure 5). Because
this behavior is less intrinsically robust, it may be more
important to directly supervise each point of contact during
execution.
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