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Abstract—The field of robotic manipulation has advanced
significantly in the last years. At the sensing level, several
novel tactile sensors have been developed. On a methodological
level, learning from demonstrations has proven an efficient
paradigm to obtain performant robotic manipulation policies.
The combination of both holds the promise to extract crucial
contact related information from the demonstration data and
actively exploit it during the policy rollouts. However, despite
its potential, it remains an underexplored direction. This work
therefore proposes a multimodal, visuotactile imitation learning
framework capable of efficiently learning fast and dexterous
manipulation policies. We evaluate our framework on the
dynamic, contact-rich task of robotic match lighting - a task in
which tactile feedback influences human manipulation perfor-
mance. Our experimental evaluations show that adding tactile
information into the policies significantly improves performance
and thereby underlines the importance of tactile sensing for
contact-rich manipulation tasks.

I. INTRODUCTION

Robotic manipulation remains far from matching the dex-
terity and efficiency of human hands [1], [2], [3]. In fact,
the current trend of exploiting human demonstration data for
learning robotic manipulation [4], [5], [6] actively exploits
human task understanding and their advanced manipulation
capabilities. Yet, while it is well-known that human manip-
ulation heavily benefits from touch sensing [7], the majority
of current works in imitation learning for manipulation is
still missing out on this modality [5], [6], [8], [9]. Given the
importance of touch for human manipulation, the question
therefore arises whether robotic policies could also benefit
from adding tactile sensing?

This work approaches the question through studying the
impact of touch sensing for learning to ignite matches.
We argue that match lighting is an effective testbed for
examining the role of touch sensing in learning robotic
manipulation from demonstrations. This is because the task
requires dynamic motion and compliance [10], which intro-
duces additional complexity compared to standard tasks such
as pick-and-place or insertion [11], [12]. Moreover, it is a
task for which there is evidence that the availability of touch
sensing impacts human performance [13]. In fact, despite
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Fig. 1: Visualization of a visuotactile policy rollout in which
the match is lit up successfully.

the task’s relevance, to the best of our knowledge, it was
previously only investigated in [10]. Yet, [10] considered
fixed match grasp poses and a precisely calibrated setup
without including high dimensional observations. Herein, we
address more complicated scenarios including varying grasp
poses and only considering the image of an RGB camera, the
end effector velocity, and eventually the information from an
event-based optical tactile sensor as observation (cf. Fig. [I).

To solve this intricate manipulation task solely from local
embodied sensing, we propose a multi-modal learning from
demonstrations framework with an emphasis on learning
from only 20 demonstrations. This data is then exploited
to learn an expressive multi-modal flow matching policy
[14], [15] suitable for reactivity and real-time inference.
Given the few demonstrations, we employ a modular policy
architecture which allows to compare different encoding
strategies given the real world observation data.

Our experimental results demonstrate the efficiency of the
proposed framework and showcases that the visuotactile poli-
cies can robustly light up matches across different scenarios
and observation encoding strategies, despite learning from
only 20 demonstrations. They also reveal that the vision-
only policies perform considerably worse throughout all the
evaluations, thereby underlining the importance of tactile
sensing for obtaining reliable robotic match lighting policies.

II. LEARNING MATCH LIGHTING POLICIES
FROM DEMONSTRATIONS

Fig. [T] depicts the components of our robotic match light-
ing environment. In terms of sensing, this work exclusively
considers local, embodied information i.e., the image infor-



mation from an Intel RealSense D405 camera mounted in
the robot’s wrist, an open source Evetac [16] tactile sensor
mounted within the Franka Panda’s parallel gripper, and
local velocity information. While Evetac naturally returns
asynchronous event information, for compatibility with the
other sensors, we integrate its events for 40ms, thereby
converting the event information into image form. In line
with this choice, we also collect all the other sensor infor-
mation at 25 Hz. Since the task is delicate, image (or tactile
image) resolution might be crucial. Thus, we maintain a high
resolution of 320 x 240 pixels for all image modalities.

Similar to [10], we collect the demonstrations through
kinesthetic teaching. This procedure ensures that the human
demonstrator directly feels the interaction forces between the
match and the striker paper. This feedback has been crucial
for achieving high task success rates during data collection.

Our multimodal policy learning framework follows the
recent trend of leveraging generative models as policies
for robotic manipulation. Since the match lighting task is
delicate and requires reactivity, we propose to employ a
model based on flow matching [17], [8]. In particular, we
follow [8] and learn an SE(3)-Rectified Linear flow model.
We impose a flow in SE(3), as the model’s output should
be the desired future trajectory of the robot end-effector.
In other words, the resulting policies’ action space is a
sequence of N = 16 SE(3) poses, T,, = (T%,...,TN) ¢
SE(3)N. However, unlike [8], the core of our policy is
a multimodal transformer architecture [18], that receives
as inputs observations from multiple sensors, including the
RGB camera image, the current end-effector velocity, and,
when available, observations from the Evetac tactile sensor.
The policy internally then outputs velocity update vectors to
refine the action sequence. This process is repeated for 5
iterations and returns the complete refined action sequence.
The observations are the crucial source of information to
refine the actions. Since we later want to compare different
sensor combinations, we ensure modularity, i.e., the indi-
vidual observation modalities are first encoded individually
into latent vectors of dimension 64. These latent vectors
then serve as the input to a transformer for refining the
action sequence. Since we only consider 20 demonstrations
for each task, we evaluate the policies’ performance under
different observation encoders. For the image observation
we consider a pre-trained ResNet 18 [19] and training
the ResNet from scratch. For the tactile observations, we
consider the pre-trained model from [16], and training this
architecture from scratch. If not stated differently, we use
the pre-trained observation encoders but also optimize them
while optimizing the policy for action generation.

ITII. EXPERIMENTAL RESULTS

This section evaluates our trained policies on the match
lighting task. We consider two task versions. One in which
the match is always grasped with the same pose, and a more
complicated one, where the grasping location is varied within
translational offsets of =1 cm & rotational perturbations of
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Fig. 2: Comparing Policy Rollouts with the Demonstration
Data. Qualitatively, the visuotactile (vision + touch) policies
better match the demonstration data than the vision-only
policies. This plot considers the y-coordinate of the end
effector which corresponds to the direction in which the robot
needs to accelerate in order to light up the matches.

TABLE I: Success Rate on the Variable Grasp Pose Task.

Policies ) o Observat%on Encoders )
Pretrained + optimize  Pretrained (frozen)  Train from Scratch
Vision-only 13% 6% 20%
Vision + Touch 80% 73% 73%

4+10°. For both tasks we collected 20 successful demon-
strations within 1 hour. We then trained our models for 500
epochs. This evaluation reports the mean performance across
task and model configurations. For each combination we
trained 3 seeds, and evaluated the last checkpoint through
performing 5 rollouts on the real system, respectively.

Fixed Grasp Pose. The visuotactile policies outperform
the vision-only policies, achieving a success rate of 86%
compared to 33%. Fig. 2] reveals that apart from the differ-
ences in success rate, the rollouts of the visuotactile policies
better match the demonstrations. In particular, the visuotac-
tile policy evaluations better align in terms of the timing
of accelerating along the striker paper, which corresponds
to the end-effectors y-axis. This finding hints at the fact
that the vision-only policies struggle to precisely detect the
point in time of making contact since this indicates that the
acceleration phase along the striker paper should follow.

Variable Grasp Pose. We repeat the same procedure for
the scenario of considering variable grasping poses. Yet,
in this scenario we consider a wider class of observation
encoders. In particular, we train policies with the pre-trained
encoders and either freeze or optimize them when training
the policies to fit the dataset. We also consider training the
observation encoders from scratch. As presented in Tab. [l
in this new, more complicated scenario, there remains a
significant difference between the vision-only and visuo-
tactile (vision+touch) policies. The superior performance
of the visuotactile policies also holds across the different
observation encoding strategies. We, therefore, conclude that
touch is a crucial sensing modality to learn performant match
lighting policies from few demonstrations. In the future,
we want to investigate whether these findings transfer to
different tasks and look into further improving the overall
performance of the visuotactile policies.
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