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Abstract— Humans naturally integrate vision and haptics
for robust object perception during manipulation. The loss of
either modality significantly degrades performance. Inspired
by this multisensory integration, prior object pose estimation
research has attempted to combine visual and haptic/tactile
feedback. Although these works demonstrate improvements
in controlled environments or synthetic datasets, they often
underperform vision-only approaches in real-world settings due
to poor generalization across diverse grippers, sensor layouts, or
sim-to-real environments. Furthermore, they typically estimate
the object pose for each frame independently, resulting in less
coherent tracking over sequences in real-world deployments.
To address these limitations, we introduce a novel unified
haptic representation that effectively handles multiple gripper
embodiments. Building on this representation, we introduce a
new visuo-haptic transformer-based object pose tracker that
seamlessly integrates visual and haptic input. We validate our
framework in our dataset and the Feelsight dataset, demon-
strating significant performance improvement on challenging
sequences. Notably, our method achieves superior generaliza-
tion and robustness across novel embodiments, objects, and
sensor types (both taxel-based and vision-based tactile sensors).
In real-world experiments, we demonstrate that our approach
outperforms state-of-the-art visual trackers by a large margin.
We further show that we can achieve precise manipulation
tasks by incorporating our real-time object tracking result
into motion plans, underscoring the advantages of visuo-haptic
perception. A complete version of our paper can be found
at [14].

I. INTRODUCTION

Accurately tracking object poses is a core capability for
robotic manipulation, and would enable contact-rich and
dexterous manipulations with efficient imitation or reinforce-
ment learning [8, 10, 23]. Recent state-of-the-art object
pose estimation methods, such as FoundationPose [24], have
significantly advanced visual tracking by leveraging large-
scale datasets. However, relying solely on visual informa-
tion to perceive objects can be challenging, particularly
in contact-rich or in-hand manipulation scenarios involving
high occlusion and rapid dynamics.

The cognitive science findings show that humans naturally
integrate visual and haptic information for robust object
perception during manipulation [5, 9, 18]. For instance,
Gordon et al. [7] demonstrated that humans use vision to
hypothesize object properties and haptics to refine precision
grasps. The human “sense of touch” consists of two distinct
senses [2, 16]: the cutaneous sense, which detects stimulation
on the skin surface, and kinesthesis, which provides infor-
mation on static and dynamic body posture. This integration,
known as haptic perception, allows humans to effectively
perceive and manipulate objects [9]. In robotics, analogous

capabilities are achieved through tactile sensors (cutaneous
sense) and joint sensors (kinesthesis) [18].

Drawing inspiration from these human capabilities, re-
searchers have explored the integration of vision and touch in
robotics for decades. As early as 1988, Allen [1] proposed
an object recognition system that combined these modali-
ties. More recently, data-driven approaches have emerged to
tackle object pose and shape estimation using visuo-tactile
information [3, 6, 11–13, 17, 19–22]. Although promis-
ing, these methods face two major barriers that hinder
their broader applicability: (i) Cross-embodiment: Most
approaches overfit specific grippers or tactile sensor lay-
outs, limiting their adaptability. (ii) Domain generalization:
Compared to visual-only baselines, visuo-tactile approaches
struggle to generalize, hindered by insufficient data diversity
and model scalability. Moreover, they typically process each
frame independently, which can result in less coherent object
pose tracking over sequences in real-world deployments. As
a result, existing methods are challenging to deploy broadly
and often require significant customization to specific robotic
platforms.

To address these challenges, we propose V-HOP: a two-
fold solution for generalizable visuo-haptic 6D object pose
tracking. First, we introduce a novel unified haptic rep-
resentation that facilitates cross-embodiment learning. We
consider the combination of tactile and kinesthesis in the
form of a point cloud, addressing a critical yet often over-
looked aspect of visuo-haptic learning. Second, we propose
a transformer-based object pose tracker to fuse visual and
haptic features. We leverage the robust visual prior captured
by the visual foundation model while incorporating haptics.
V-HOP accommodates diverse gripper embodiments and
various objects and generalizes to novel embodiments and
objects.

We build a multi-embodied dataset with eight grippers
using the NVIDIA Isaac Sim simulator for training and
evaluation. Compared to FoundationPose [24], our approach
achieves 5% improvement in the accuracy of object pose
estimation in terms of ADD-S [25] in our dataset. These
results highlight the benefit of fusing visual and haptic
sensing. In the FeelSight dataset [20], we benchmark against
NeuralFeels [20], an optimization-based visuo-tactile object
pose tracker, achieving a 32% improvement in the ADD-
S metric and ten times faster run-time speed. Finally, we
perform the sim-to-real transfer experiments using Barrett
Hands. Our method demonstrates remarkable robustness and
significantly outperforms FoundationPose, which could lose
object tracks entirely. When integrated into motion plans, our
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Fig. 1: Network design of V-HOP. The visual modality, based on FoundationPose [24], uses a visual encoder to process
RGB-D observations (real and rendered) into feature maps, which are concatenated and refined through a ResBlock to
produce visual embeddings [4]. The haptic modality encodes a unified hand-object point cloud, derived from 9D hand Ph

and object Po point clouds, into a haptic embedding that captures hand-object interactions. The red dot in the figure denotes
the activated tactile sensor. These visual and haptic embeddings are processed by Transformer encoders to estimate 3D
translation and rotation.

approach achieves 40% higher average task success rates. To
the best of our knowledge, V-HOP is the first data-driven
visuo-haptic approach to demonstrate robust generalization
across both taxel-based tactile sensors (e.g., Barrett Hand)
and vision-based tactile sensors (e.g., DIGIT sensors), as
well as on novel embodiments and objects.

In conclusion, our contributions to this paper are two-fold:
1) Unified haptic representation: we introduce a novel

haptic representation, enabling cross-embodiment
learning and addressing the cross-embodiment chal-
lenge by improving adaptability across diverse embod-
iments and objects.

2) Visuo-haptic transformer: We present a transformer
model that integrates visual and haptic data, improving
pose tracking consistency and addressing the domain
generalization challenge.

II. METHODOLOGY

We propose V-HOP, a data-driven approach that fuses
visual and haptic modalities to achieve accurate 6D object
pose tracking. Our goal is to build a generalizable visuo-
haptic pose tracker that accommodates diverse embodiments
and objects. Our choice for the representations follows the
spirit of the render-and-compare paradigm [15]. An overview
of our network design is at Fig. 1.

III. EXPERIMENTS

We compare V-HOP against the current state-of-the-art
approaches in visual pose tracking (FoundationPose [24], or
FP in short) and visuo-tactile pose estimation (ViTa [3]).
To ensure a fair comparison, we finetune FoundationPose
and train ViTa on our multi-embodied dataset. To verify the
generalizability of the novel object and novel gripper, we
exclude one object (pudding box) and one gripper (D’Claw)
during training.

Object Name AUC Metric ViTa FP V-HOP
ADD 5.61 64.95 62.88master chef can ADD-S 80.51 84.60 86.38
ADD 11.09 73.21 74.75sugar box ADD-S 74.34 85.27 89.35
ADD 32.08 57.02 59.13tomato soup can ADD-S 84.19 78.45 83.30
ADD 7.23 72.65 74.07mustard bottle ADD-S 73.49 86.05 88.57
ADD N/A 69.87 70.75pudding box (Unseen) ADD-S N/A 84.63 88.20
ADD 43.20 63.89 69.75gelatin box ADD-S 86.66 80.16 86.87
ADD 34.13 65.62 68.29potted meat can ADD-S 86.77 82.67 87.21
ADD 23.93 63.87 69.72banana ADD-S 71.67 79.99 85.79
ADD 35.05 59.60 58.42mug ADD-S 86.58 82.16 84.10
ADD 2.58 67.21 68.56power drill ADD-S 61.02 80.77 85.77
ADD 23.34 66.23 70.67scissors ADD-S 65.56 81.27 85.08
ADD 42.43 61.74 71.10large marker ADD-S 73.69 75.45 85.00
ADD 30.56 71.64 75.63large clamp ADD-S 79.20 86.07 89.09
ADD ↑ 23.93 66.29 68.90All ADD-S ↑ 76.87 82.37 86.62

TABLE I: Per-object comparison of AUC metrics for ADD
and ADD-S. The row of novel object is grayed out. Both
metrics are the higher, the better. The best results are bolded.

In Tab. I, we show the performance for each object.
V-HOP consistently outperforms ViTa and FoundationPose
(FP) on most objects with respect to ADD and across all ob-
jects in terms of ADD-S. On average, our approach delivers
an improvement of 4% in ADD and 5% in ADD-S compared
to FoundationPose. Notably, V-HOP demonstrates strong
performance on unseen objects, highlighting the potential of
our model to generalize effectively to novel objects.
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