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Abstract— Conventional vision-based tactile sensors (VBTS)
offer high-resolution shape reconstruction, yet their limited
sensing areas and susceptibility to damage during sliding make
them unsuitable for continuous, large-scale inspections. To
overcome these limitations, we present GelBelt, a novel VBTS
capable of uninterrupted surface scanning. GelBelt utilizes
an elastomeric belt guided by two wheels, enabling smooth
movement across surfaces. Experimental evaluations demon-
strate the sensor’s effectiveness in 3D shape reconstruction of
large-scale surfaces.

I. INTRODUCTION

Automated surface inspection to reduce production de-
fects and prevent component damage has long been de-
manded [1]. As industries expanded and increasingly inte-
grated automation, the need for reliable inspection solutions
became more demanded [2], [3]. Accurate surface evalu-
ation is essential for maintaining high product standards,
ensuring operational safety, and preventing system failure.

Vision-based tactile sensors (VBTS) offer a promising
solution by balancing performance with cost-effectiveness.
Systems like GelSight [4] use high-resolution cameras
to gather precise surface information [4]–[8]. Although
conventional VBTS designs offer high accuracy, they are
limited by their small sensing areas and the rigidity of
the elastomeric membrane. This design constraint makes
it difficult to gather continuous data over large surfaces, as
the sensor must be repeatedly lifted and pressed [9]. While
cylindrical VBTSs [10], [11] with rolling mechanisms en-
able continuous sensing, they provide only narrow tactile
frames with varying indentation depths, making them less
practical for large-scale surface inspections.

This paper introduces GelBelt [12], a novel VBTS de-
signed to address these challenges. GelBelt decouples the
elastomer from the rigid plate, allowing it to function as a
belt that rolls over two wheels. This configuration ensures
uninterrupted tactile data acquisition while maintaining ex-
tensive surface contact within each frame. Our experiments
validate the sensor’s performance by comparing estimated
surface normal maps with ground truth values. GelBelt
achieved an average alignment score of 0.97 (dot product).
We use markers to estimate contact forces up to 60 N and
surface angles across ranges of -10° to 10° and -3° to 3°.

II. SENSOR OVERVIEW

GelBelt features a two-wheel system with a flexible belt
made from sensing materials, as shown in Figure 1 and
Figure 2 E. During scanning, the belt moves across the
wheels while the optical components, fixed between the
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Fig. 1. The GelBelt sensor can be mounted on a UR5e robotic arm,
operated by a human, or motorized to scan large surfaces.

wheels, capture surface contact data. Since elastomers tend
to adhere to acrylic, we attach a thin, transparent low-
friction layer to the inner side of the belt, facilitating the
motion. The belt’s outer surface is coated with reflective
powder to capture fine details, with additional markers at
the edges for position tracking. In addition to mounting the
sensor on a robot arm or holding it in hand, GelBelt can tra-
verse surfaces like a small vehicle by incorporating motors
on the wheels, as shown in Figure 1. The overall dimensions
of the sensor are 175 mm×80 mm×65 mm (L×W×H),
with a sensing area of 40× 60 mm2.

We fabricated the belt using Silicone XP-565 (Silicone
Inc.) coated with diffusive aluminum powder and laser-
engraved markers along the belt’s edges. A clear tape
was used as the intermediate layer between the belt and
acrylic. The tape is thin and flexible enough to wrap around
the wheels while maintaining a stiff, low-friction surface
against the acrylic.

GelBelt utilizes photometric stereo techniques for esti-
mating surface normals [7]. We build on the method out-
lined in [13] to predict surface normal maps from GelBelt’s
tactile images using a simple MLP model. To reconstruct a
larger surface, we combine data of multiple tactile images
as the belt moves across it. We estimate the sensor’s planar
movement between consecutive frames using optical flow
[14] initialized by marker movement and applied to the
normal maps. We register each local normal map with the
global map based on the estimated poses while averaging
overlapping regions. We also use side markers to train and
test a simple MLP model to estimate the contact angle
and normal force. Markers are detected using the blob dog
function from the Scikit-image Python library.



Fig. 2. (A) 2D normal estimation accuracy plot over the sensing area. (B) 3D-printed mesh surface reconstruction. (C) PCB surface reconstruction
in robot-assisted and manual modes. We evaluate the planar distance and angle drift for the red control points. (D) We attached motors for standalone
sensing. (E) Highlighted optical components. (F,G) Splines are fit to the detected side markers. 2× 10 white points are interpolated as model inputs.
(I,J) Mean errors of estimated angles. Maximum standard deviation is about 1 and 0.1 degrees for α1 and α2 (K) Normal force prediction plot.

III. EXPERIMENTS

A. Surface Geometry Reconstruction

To quantify the reconstruction accuracy, we press a
hexagonal indenter with known dimensions at 143 positions
across the sensing area, arranged in a 13 × 11 grid. The
sensor’s surface normals are estimated for each indentation,
and we compute the dot product between the predicted
normals and the ground truth. The accuracy distribution for
the 143 measurements is plotted in Figure 2 Aiii.

To reconstruct a larger surface, we combine data from
multiple tactile images as the belt moves across it. Figure 2
Bii and Cii display 3D meshes reconstructed from a printed
mesh (created using a Form 3+ printer by FormLabs) and
a PCB, respectively using a UR5e robot. These results
demonstrate GelBelt’s capability to accurately stitch and
capture fine surface details across extended areas, producing
high-quality 3D models. To our knowledge, GelBelt is the
fastest vision-based tactile sensor for continuous scanning,
speeds up to 45 mm/s with the potential for even higher
speeds.

We also tested GelBelt under manual operation, where
a human operator guided the sensor across surfaces. As
shown in Figure 2 Ciii, despite the inconsistencies intro-
duced by manual handling, the sensor maintained accurate
surface reconstruction, demonstrating its robustness even in
less-controlled environments. We also explored autonomous
sensing by attaching motors to the sensor, allowing it to roll
over surfaces independently. Figure 2 D shows the results
of motorized scanning on a honeycomb laser bed.

We analyzed the distances and angles of line segments
formed by 9 control points (red circles in Figure 2 Ci) by
comparing the real image (pixel-to-mm scaled via caliper)
and reconstructed PCB surfaces to assess planar drift. The
mean absolute errors in robot-assisted mode are 0.33 mm
and 0.35◦. In manual mode, they are 0.38 mm and 0.28◦.

B. Contact Force and Angle
Figure 2 G shows a sample image of the marker area

with detected markers (black dots), fitted spline, and feature
points (white dots). We collected data for rotations in two
axes, shown in Figure 2 H, using a UR5e robot. We change
contact angles in the range of -3 to 3 degrees in the x-
axis direction (wheelbase axis) and -10 to 10 degrees in
the y-axis (wheel axis) with intervals of 0.5 and 1 degree,
respectively, for 35 iterations while rolling the belt.

Figure 2 F-J show that the model accurately estimates
contact angles for both axes. However, the estimation error
is slightly higher for the x-axis compared to the y-axis,
and the error increases with larger angles. Figure 2 K
demonstrates that the force estimation model predicts the
applied normal force with good precision.

Figure 2 K shows that the force estimation model can
predict the applied force with good accuracy over the entire
range of the study with an error of 1 N (95% confidence
interval). Contact force and angle estimation results show
the potential application of the markers’ motion as feedback
in future work on robust scanning of larger surfaces.

IV. CONCLUSION

This paper introduced a novel design approach for vision-
based tactile sensors that enables rapid and efficient sur-
face scanning. We presented the design, fabrication, and
evaluation of the proposed GelBelt sensor, demonstrating
its effectiveness in practical applications. The mechani-
cal design features an elastomeric belt mounted on two
wheels, facilitating continuous movement over surfaces
and enhancing scanning versatility. Both qualitative and
quantitative evaluations confirm the sensor’s reliability, with
low reconstruction and alignment errors. Future work will
improve the sensor design to scan curved surfaces while
maintaining sufficient contact using contact force and angle
feedback.
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