
Toward synthetic data generation for robotic tactile manipulations *

Guillaume Duret1,3, Florence Zara2, Jan Peters3 and Liming Chen1

I. INTRODUCTION

Data collection for tactile-based robotic manipulation
plays a crucial role in improving existing models and en-
abling general models to perform effectively across various
scenarios. These tactile sensors can infer essential informa-
tion, such as force measurements, contact area, and marker
displacements. These tactile sensors have been successfully
employed in diverse applications, including: rich-contact
tasks, grasping transparent objects, slipping detection or
force-controlled grasping for fragile and deformable items.
Most of these tasks rely on small datasets from real-world
scenarios. Consequently, a significant limitation persists: the
scarcity of data.

In recent years, numerous simulations designed for tac-
tile sensors have emerged. Initial efforts focused on rigid
body simulation, using conventional rendering techniques
like rasterization [1], [2], [3] and ray tracing [4] to create
synthetic tactile images. The deformation of the Gelsight
sensor was represented in the image through smoothing [5],
and promising results have been achieved with domain
adaptation techniques [6], [7]. However, tactile deformation
in real-world tactile sensors is essential for shear force
or tactile marker displacement. Consequently, research has
shifted towards physically accurate simulations for robotic
manipulation. Physical deformation has been modeled using
the Material Point Method (MPM) to generate more precise
tactile images [8], [9]. The Finite Element Method (FEM)
has been used to introduce marker-based and shear force
data [10], [11], [12]. This work has demonstrated the effec-
tiveness of deformable simulation in producing high-quality
tactile images. However, none of these recent works proposed
general grasping manipulation for data generation.

To address this limitation, our research aims to develop
a general method for generating synthetic data tailored for
tactile-oriented research problems. This paper presents the
first simulation of the Gelsight Mini sensor, a market-
available, user-friendly sensor that requires no expertise or
time in 3D printing. We propose an FEM simulation pipeline
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Fig. 1: Two configurations of the same grasping pose are
presented. The left part presents a grasping pose with the
object oriented in the direction of gravity. The right part
shows the object oriented perpendicularly. The respective
tactile images show that the second configuration requires
much more force on the object and puts the sensor under
high stress and shear force, which is not suitable.

to generate meaningful data for major grasping-based tac-
tile research problems, thereby facilitating automatic data
generation for training general on tactile manipulation.
Our approach incorporates recent advancements in tactile
sensor simulation into the existing FEM-based simulator,
Defgraspsim [13]. Our extension enables the recording of
deformable tactile data during grasping through a specific
pipeline designed to address dataset generation for multiple
tactile challenges, as detailed in Section II. Additionally,
for the purpose of data generation, the large-scale dataset
Acronym [14] is used as data input to offer a variety of
more than 17.7 million grasping poses for more than 8 872
objects across 262 categories. This enable the generation of
extensive tactile annotations such as grasping success, forces,
slipping, stress, deformation, and tactile images.

II. SIMULATION PIPELINE

We introduce a grasping pipeline for tactile data recording
extending the capabilities of Defgraspsim [13], which was
originally designed for generating data related to grasping
deformable objects. Our pipeline includes high-level anno-
tations such as grasping success and slipping, as well as
frame-to-frame ground truth information such for stress,
deformation, forces data, and marker-based tactile images
similarly to [15], [11]. Additionally, one can load any
grasping pose from the large-scale dataset Acronym [14].
The simulation serves as an all-in-one pipeline, generating
meaningful data for tactile-based manipulation.

a) Gravity aware grasping success: The ability to eval-
uate grasping poses is essential for control models. However,
this evaluation is dependent on gravity compared to pure
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Fig. 2: Example of a simulated rectangle grasped with two Gel-Sight mini sensors and a franka panda gripper during the
different steps of the simulation.

rigid body grasping [14]. Indeed, tactile sensors are inher-
ently fragile, and their purpose may involve manipulating
fragile or deformable objects. As depicted in Fig. 1, gravity
plays a critical role in determining the success of a grasping
pose and affects the outcome of deformation and tactile
images. The grasping process can be divided into two phases.
First, the simulation closes the finger until contact (see
Fig. 2a) is established, with the force reaching a parameter
N newtons (refer to Fig. 2b and 2c). The second phase
incorporates gravity. This two-phase approach allows us to
generate grasping success metrics that account for gravity.
During this step, ground truth data was recorded, including
the deformation and stress of the sensor for each force
applied to the object as seen in Fig. 3.

Fig. 3: For the rectangle example: (left) illustration of the
deformation; (right) stress applied on it.

b) Slipping detection: The final step involves gradually
reducing the grasping force until contact between the gripper
and the object is lost. This step provides information about
the force required for gravity aware stable grasping and can
introduce slipping tactile data (see Fig. 2d). Taking advan-
tages of the simulation, slipping movement was detected by a
change of contact between the object and the gripper. Using
this slipping detection, we can annotate during the pipeline
the frames where there was slipping. The data generated can
then be used for slipping detection or in controlled slipping
manipulation models.

c) Tactile images and experiments: Tactile images were
computed in a second step using the simulation data. Indeed,
the deformed surface was extracted and used to render the
tactile image. To take into account the marker and real-world
texture, a calibration of the camera sensor was performed.
This calibration step offers multiple advantages, such as
reducing camera distortion on the tactile image and using
this undistorted image as a texture for the synthetic tactile
image. Fig. 4 shows three examples of marker-based textures
that can be used. To qualify the quality of the tactile data, a
comparison of the synthetic tactile image and the real tactile
image is illustrated in Fig. 5, where the similarity of the

marker is demonstrated. In general, the tactile data can be
used to learn global inference, establishing the global link
between grasping tactile images and other annotations (as
previously described in paragraph II-.0.a).

Fig. 4: Three examples of texture were applied to the
tactile sensor: the left one uses a small marker texture; the
middle one uses a real size marker texture; and the last one
uses a real tactile image as texture. The first row shows
the undeformed texture, while the second row shows the
deformation induced by grasping the rectangular object.

Fig. 5: Visual comparison between synthetic tactile image
(left) and a real tactile image (right) for a rectangle object

d) Limitations: This work is a preliminary step towards
generating comprehensive data for tactile robotic manip-
ulation using Isaac Gym. Despite the high-quality output
from the FEM simulation, it is computationally expensive,
reducing the effectiveness of parallelization.

III. CONCLUSION

Our study extends the data recording pipeline of Defgrasp-
sim for tactile sensors, proposing a comprehensive pipeline
for tactile data generation related to manipulation. The
generated data targets multiple research objectives in tactile-
oriented studies and paves the way for large-scale tactile data
datasets. Consequently could also facilitate the pre-training
of general tactile based models for tactile manipulation,
thereby significantly advancing tactile manipulation research.
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