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Abstract—Humans have exceptional tactile sensing capabilities,
which they can leverage to solve challenging, partially observable
tasks that cannot be solved from visual observation alone.
Research in tactile sensing attempts to unlock this new input
modality for robots. Lately, these sensors have become cheaper
and, thus, widely available. At the same time, the question of
how to integrate them into control loops is still an active area
of research, with central challenges being partial observability
and the contact-rich nature of manipulation tasks. In this study,
we propose to use Reinforcement Learning to learn an end-
to-end policy, mapping directly from tactile sensor readings
to actions. Specifically, we use Dreamer-v3 on a challenging,
partially observable robotic insertion task with a Franka Re-
search 3, both in simulation and on a real system. For the
real setup, we built a robotic platform capable of resetting
itself fully autonomously, allowing for extensive training runs
without human supervision. Our preliminary results indicate that
Dreamer is capable of utilizing tactile inputs to solve robotic
manipulation tasks in simulation and reality. Furthermore, we
find that providing the robot with tactile feedback generally
improves task performance, though, in our setup, we do not yet
include other sensing modalities. In the future, we plan to utilize
our platform to evaluate a wide range of other Reinforcement
Learning algorithms on tactile tasks.

I. INTRODUCTION

Humans heavily rely on their tactile sense to solve dexterous
manipulation tasks [1, 2]. Haptic feedback allows humans to
achieve high levels of accuracy in tasks ranging from classical
assembly tasks to critical medical surgeries. At the same
time, the dexterous manipulation capabilities of even the most
sophisticated robots lag behind those of even a small child if
the environment is not strictly controlled. One way of closing
this gap is to equip robots with tactile sensors. Tactile sensors
provide robots with crucial feedback at the points of contact,
which their end-effectors often occlude from vision.

Recently, the development of vision-based tactile sen-
sors [3–5] has sparked interest in applying machine learn-
ing to various tactile-based perception tasks, such as object
classification [6], texture recognition [7, 8], and shape recon-
struction [9]. In contrast to conventional sensors that estimate
physical quantities like contact forces or torques, vision-
based tactile sensors provide an image of the deformation of
the contact surface. This shift in paradigm necessitates pre-
processing the sensor data before utilization in a control loop.
However, advances in computer vision in the last decades
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Fig. 1: Tactile Insertion Platform Setup. We label the gripper
(a), GelSight Mini sensor (b), OptiTrack marker (c), cylinder
(d), base plate (e), reset box (f), and thin thread (g).Note, that
only one of the two GelSight Mini sensors is used in this work.

have made machine learning methods effective in extracting
information from visual representations [10, 11].

A central challenge of many manipulation tasks is partial
observability, as object tracking is often inaccurate, especially
due to occlusion caused by the robot’s end-effector. While
tactile sensors can provide crucial information about the points
of contact, the information obtained from them will usually
still be incomplete, rendering the decision-making problem
a Partially Observable Markov Decision Process (POMDP).
Yet, reinforcement learning (RL) algorithms commonly rely
on the assumption that the state-space S is Markovian and
fully observable [12–16]. Recently, a number of RL algorithms
have been proposed that tackle POMDPs by learning a latent
state-space model of the environment [17–26].

In this paper, we utilize Dreamer-v3 [27] to solve a
challenging, partially observable robotic insertion task purely
from tactile feedback, both in simulation and the real world.
Dreamer is a model-based RL approach that learns a latent
state-space model and an actor-critic model simultaneously,
which has shown great success in challenging Atari games [24]
and even on a physical quadruped task [26]. We show that
Dreamer is capable of utilizing tactile feedback from a Gel-
sight Mini [3] sensor effectively while simultaneously being
sample efficient enough to train in the real world from scratch.
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Fig. 2: Evaluation Results. Insertion success rates during
training in simulation (left) and on the real system (right).

Our contributions are (i) the development of a tactile insertion
simulation setup based on Taxim [28], allowing for rapid
development and testing, (ii) the design of a real robot platform
with fully autonomous robust resetting of the task, allowing
for extensive training runs without human supervision, and
(iii) a preliminary evaluation the influence of touch on learning
insertion policies in simulation and on the physical system.

II. ROBOTIC PLATFORM

The robotic setup, consisting of a 7 DoF Franka Research 3,
a circular peg, and a base plate with an insertion hole, is
presented in Fig. 1. We mount a vision-based GelSight Mini
tactile sensor [3] sensor in the fingertips of the robot’s gripper.
A key challenge is the development of a reset procedure that
places the agent back in its initial state, with the peg properly
placed in its gripper. To prevent the loss of the cylinder if
the peg slips from the gripper, we suspend the peg with a
thin thread connected to the gripper. Upon losing contact, the
peg hangs from the thread. The robot then moves to a reset
box, lowers the peg inside, re-grasps, and returns to its initial
position above the insertion hole. This resetting procedure
enables the agent to train consecutively for multiple days
without requiring human intervention.

The agent’s observation comprises a 64 × 64 × 3 RGB
image from the Gelsight sensor and the end-effector position
pe ∈ R3 in Cartesian coordinates at 25Hz. The policy returns
the relative new positions of the end-effector at 20Hz. These
target positions are then fed into the franky [29] control
library, which internally uses ruckig [30] for smooth motion
planning and Franka’s internal cartesian impedance controller
for execution. We ensure safe exploration of the environment
by restricting the workspace W to be in the vicinity of the
hole. For continuous tracking of the cylinder pose, we utilize
OptiTrack [31]. This information is only used for evaluation
of the robot’s performance and not as an input to the policy.

To simulate variation of the hole position, we add a random,
per episode constant, offset of up to 5mm to the observed
end-effector position. This way, even though the hole position
never changes, for the agent it seems as if it did since its base-
frame is slightly different in every episode. Furthermore, we
randomly vary the starting position of the robot’s end-effector.

As shown in Table I, the reward comprises of four compo-
nents: (i) proximity to the goal, (ii) a terminal reward upon
reaching the goal G = {x ∈ R3 : |pg−x| < (5, 5, 10)⊺[mm]},
(iii) a terminal penalty for leaving the workspace, and (iv)

an action penalty to encourage smooth motions. The policy
training includes several neural network models: encoder and
decoder networks that project between the observation space
and the 4160-dimensional latent space, a recurrent state-space
model, a reward model in the latent space, and the policy.

In addition, we develop a digital twin of our setup in
PyBullet [32], tactile sensors are simulated with Taxim [28].

III. EMPIRICAL EVALUATIONS

TABLE I: Reward function,
with multiple components.

r = rd + rg + rp + ra

rd = −5 · (|pg − pe|)
rg = 100 · 1{G}(pg)
rp = −100 · 1{R3/W}(pe)
ra = 10−3 · |a|

We train Dreamer from
scratch, both in simulation
and reality. In either en-
vironment, we conduct ex-
periments with and with-
out tactile sensors to eval-
uate whether tactile sensing
yields a benefit for our task.

a) Simulation results:
Fig. 2 shows that Dreamer achieves a success rate up to 90%
given end-effector and tactile information. We investigate the
importance of proprioception and tactile sensing by removing
the end-effector and tactile observations in two experiments.
The results clearly show that using tactile images greatly
improves learning performance, while observing the end-
effector position yields no significant benefit.

b) Real Robot results: On the real setup, our study
comprises an experiment using only the end-effector position
and one including the tactile feedback. Although the differ-
ence in performance between these two experiments is less
pronounced than in simulation, especially in the beginning,
tactile sensing still seems to provide a substantial advantage
in performance. We hypothesize that the inherent softness
of the gripper in the real system might simplify the task
compared to the simulated setup, where we use rigid body
physics. However, the results are still preliminary, and more
experiments will have to be conducted in the future.

IV. CONCLUSION & FUTURE WORK

In this work, we developed a robot platform that facilitates
autonomous training of an RL agent on a Franka Research 3
robot to investigate whether reinforcement learning is a viable
option for incorporating tactile feedback in control loops. To
ensure reliable and safe training, we implement a robust reset-
ting routine and restrict the action space, enabling autonomous
learning of an insertion policy without human supervision.
Leveraging tactile feedback from a vision-based tactile sensor
attached to the gripper, our policy autonomously learns to
insert a peg into a hole using the model-based RL approach
Dreamer. Our simulation results suggest that the inclusion of
tactile information significantly enhances learning outcomes.
With our platform, we intend to benchmark other RL algo-
rithms on tactile insertion tasks to get a clear understanding
of which methods are capable of dealing with the inherent
complexity of tactile manipulation tasks in the real world.
Furthermore, we plan to increase task complexity in future
experiments, enabling a thorough exploration of touch’s role
in dexterous manipulation.
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