Learning Visuotactile Skills with Two Multifingered Hands
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Fig. 1. An overview of our system setup and learned visuotactile skills on four tasks. (a) Our hardware and teleoperation system
setup. The hardware consists of two URSe robot arms, each equipped with a Psyonic Ability Hand. Visual observations are obtained
via two wrist RGB-D cameras and one third-view RGB-D camera. Tactile observations come from the multifingered hands, with each
fingertip equipped with six touch sensors. We utilize the Meta Quest 2 platform for teleoperation. (b) We use grip buttons of the Quest
controllers to command power grasp of the non-thumb fingers. (c) We use thumbsticks to control the 2-DoF joint positions of the thumbs.
(d) Four policies learned from visuotactile data collected by our hands-arms teleoperation system (HATO). These policies can accomplish
a variety of complex bimanual tasks: handing over slippery object, stacking block tower, pouring from a wine bottle, and serving steak.

I. INTRODUCTION

Aiming to replicate human-like dexterity, perceptual ex-
periences, and motion patterns, we explore learning from
human demonstrations using a bimanual system with mul-
tifingered hands and visuotactile data [1], [2], [3]. Two
significant challenges exist: the lack of an affordable and
accessible teleoperation system suitable for a dual-arm setup
with multifingered hands [4], and the scarcity of multifin-
gered hand hardware equipped with touch sensing [5], [6].
To tackle the first challenge, we develop HATO, a low-
cost hands-arms teleoperation system that leverages off-the-
shelf electronics, complemented with a software suite that
enables efficient data collection; the comprehensive software
suite also supports multimodal data processing, scalable
policy learning, and smooth policy deployment. To tackle
the latter challenge, we introduce a novel hardware adap-
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tation by repurposing two prosthetic hands equipped with
touch sensors for research. Using visuotactile data collected
from our system, we learn skills to complete long-horizon,
high-precision tasks which are difficult to achieve without
multifingered dexterity and touch feedback. Furthermore, we
empirically investigate the effects of dataset size and sensing
modality on policy learning. Our results mark a promising
step forward in bimanual multifingered manipulation from
visuotactile data.

II. HATO: HANDS-ARMS TELE-OPERATION

We develop HATO, a novel teleoperation system for
bimanual multifingered hands. Our system is easy to set up
and intuitive to use, enabling efficient collection of bimanual
dexterous manipulation data. An overview of our system is
shown in Figure 1. For teleoperation of each hand-arm pair,
HATO maps a Meta Quest 2 virtual reality (VR) controller’s
pose to the end-effector pose of the robot arm, and the
controller’s grip button and thumbstick to the hand’s joint po-
sitions. The HATO software suite includes a data collection
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Fig. 2. Fingertip Tactile Sensor Layout. There are six tactile
sensors on each of the fingertips. Each tactile sensor provides a
continuous value proportional to the sensed pressure.

pipeline that records and processes data from all available
sensing modalities (vision, touch, and proprioception).

For robot setup, we use two URSe robot arms and attach
two Psyonic Ability Hands as end effectors. These hands
were originally designed for prosthetic use [7]; we repur-
pose them for research by designing custom printed circuit
boards (PCBs) that simplify electrical wiring by integrating
communication interfaces with power distribution. Each hand
has five fingers and each finger has six actuated DoFs (one
for each finger, two for the thumb). Each fingertip also comes
with six touch sensors (see Figure 2).

Our teleoperation system leverages the Meta Quest 2 plat-
form. It comes with a VR headset and a pair of controllers,
each designated for one hand. Using a VR application
like oculus_reader [8], one can stream data related to the
controllers’ poses and button states in real-time. Our main
contribution is the development of a software suite that
provides flexible options for translating movements detected
by the Quest controllers to precise control commands for a
bimanual multifingered robotic system. For arm control, we
read the pose measurements from the Quest controller, and
transform the pose to a desired end-effector (EEF) pose of
the robot’s coordinate system. For hand control, we map the
controller’s grip button to the joint positions of the four non-
thumb fingers (4 DoF), and maps the thumbstick readings to
joint positions of the thumb (2 DoF).

We collect multimodal data from both hands and arms
by running HATO data collection pipeline at 10Hz. The
data include the proprioceptive states of both the URS5e
arms and the Ability Hands, the RGB-D images from three
RealSense depth cameras (two mounted on the hand wrists,
one mounted at a stationary “head-view” position), the touch
sensor readings from the Ability hands, and the control
commands given to the URS5e arms and the Ability hands.
With visuotactile demonstration data collected from HATO,
we learn a variety of bimanual dexterous skills for complex
tasks using diffusion policies [9].

ITII. EXPERIMENTS

We consider four challenging real-world tasks (Figure I)
to study the bimanual dexterity enabled by our system.

We first qualitatively investigate whether having multi-
fingered hands as end-effectors allows for better manipu-
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Fig. 3. How does the demonstration dataset size affect policy
prediction error? Across all tasks, having more demonstration
trajectories consistently lead to lower prediction loss. In particular,
the policy performance saturates for Bloock Stacking at 75 demon-
strations, Wine Pouring at 200 demonstrations and Steak Serving at
100 demonstrations.
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Fig. 4. How vision and touch affect the policy performance
across four challenging bimanual manipulation tasks. Across
all tasks, vision is crucial for the policy to achieve low prediction
error.

Task  Handover  Stacking  Pouring  Serving
Pickup 10/ 10 10/ 10 10/ 10 10/ 10
Task Success 10/ 10 10/ 10 91710 5/10

TABLE 1. Success rate on each of the four challenging bimanual
manipulation tasks. For Slippery Handover and Wine Pouring, we
use only image observation and proprioceptive state as we find these
two inputs are sufficient to achieve almost 100% success rate. For
Block Stacking and Steak Serving, we use image, proprioception,
and touch as input. The pickup success is an intermediate metric that
measures how often the hands successfully pick up both objects.

lation capabilities than parallel-jaw grippers by comparing
their performances on the four manipulation tasks above.
With multifingered hand end effectors, previously inexpe-
rienced teleoperators are able to collect hundreds of high-
quality demonstrations within a few hours.

We then validate the effectiveness of HATO as a data col-
lection pipeline by demonstrating successful policies trained
from HATO-collected datasets. In particular, we record the
task success rate of learned policies using 10 deployment
trails. In addition to the success rate for the full task, we
also record how many times each policy successfully picks
up the object(s) (e.g., bottle and cup for pouring, pan and
spatula for steak serving, two blocks for stacking, and banana
for handover) as the partial task completion rate. As shown
in Table I, our policy is able to pick up the object(s) with
100% success rate across all tasks.

Finally, we study the efficiency of our learning method
by empirically evaluating the correlation between number of
demonstrations and policy performance (Figure 3), and quan-
titatively confirm that how the visuotactile sensing modalities
are important to policy learning and performance (Figure 4).
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