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Abstract—Telerobotics enables humans to overcome spatial
constraints and allows them to physically interact with the
environment in remote locations. However, the sensory feedback
provided by the system to the operator is often purely visual,
limiting the operator’s dexterity in manipulation tasks. In this
work, we address this issue by equipping the robot’s end-
effector with high-resolution visuotactile GelSight sensors. Using
low-cost MANUS-Gloves, we provide the operator with haptic
feedback about forces acting at the points of contact in the
form of vibration signals. We propose two different methods for
estimating these forces; one based on estimating the movement of
markers on the sensor surface and one deep-learning approach.
Additionally, we integrate our system into a virtual-reality
teleoperation pipeline in which a human operator controls both
arms of a Tiago robot while receiving visual and haptic feedback.
We believe that integrating haptic feedback is a crucial step for
dexterous manipulation in teleoperated robotic systems.

Index Terms—Visuo-Tactile, Haptic-feedback, Teleoperation,
Human-robot interaction

I. INTRODUCTION

Teleoperation, the remote control of robots, enables humans

to overcome spatial constraints and physically interact with the

environment in remote locations [1, 2]. Recently, contributions

such as the Nimbro system [3, 4], the ALOHA system [5],

or the mobile ALOHA system [6] attracted a lot of attention

in the field. A common challenge lies in providing feedback

that is not easily conveyed through images, like temperature,

surface structure, or current grip force. Haptic feedback has

been looked to as a solution to this problem, providing

additional information through touch instead of sight [7, 8].

This information is particularly relevant in our context, as we

are aiming for an intuitive teleoperation system designed for

people with limited technical knowledge.

In this work, we integrated vibrotactile feedback into a

virtual reality (VR) teleoperation pipeline to improve perfor-

mance in object manipulation tasks. This addition extends the

visual feedback received from the VR system by providing

tactile sensations. The user operates a dual-arm manipulation
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Fig. 1: The Teleoperation setup. Left - Tiago Robot equipped

with tactile GelSight sensor. Right - Comparison of soft and

hard grasps of modeling compound.

robot, benefiting from both visual and tactile cues to improve

control and precision. Vibration feedback, also called vibro-

tactile feedback, is one of the most commonly used types of

tactile feedback [9–12]; used due to its low profile, cost, and

power consumption. To obtain haptic information about the

objects to be manipulated, we attached visuotactile sensors

to the robot’s grippers. We use these sensors to detect the

force exerted when interacting with objects. This information

is crucial to ensure that objects are neither dropped nor crushed

when manipulating them. The force data is then converted into

a vibration intensity and transmitted to the user as vibrotactile

feedback. In this way, the user receives tactile feedback in

real time, providing a more intuitive sense of control when

gripping or touching objects. While gripping force could also

be measured with simple force sensors, visuotactile sensors

can provide much richer information about the points of

contact, such as object texture [13, 14], object shape [15], or

the presence of slip [16]. In future work, we plan to feed back

such information to the user in addition to force feedback.

In the following, we provide an overview of the developed

teleoperation system and detail methods for visuo-tactile force

estimation. We present initial evaluations validating the proof

of concept, followed by an outlook on future research direc-

tions and potential applications.

II. SYSTEM AND METHOD

We integrate haptic feedback into a VR teleoperation

pipeline, as shown in Figure 2. The user wears a VR headset
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Fig. 2: Overview of different components of the proposed system. (a) - The haptic feedback pipeline. (b) - The teleoperation

pipeline. (c) top - The dot-matrix gel with/without an external force from a cylindrical object. (c) bottom - The corresponding

optical motion flow visualised in 3D overlaid by upscaled vectors of the motion flow.

from [17] providing a first-person view through a stereo

camera [18] mounted on the robot’s head. This setup enables

intuitive control of a dual-arm manipulation robot such as

[19], akin to systems described in works [20, 21]. For haptic

feedback, we use two Prime X Haptic gloves from MANUS

[22], equipped with flex sensors and vibration motors for each

finger. The flex sensors detect the user’s finger pose, a gesture

that the robot’s grippers mimic. Additionally, a VR tracker

from [17] on the glove tracks the user’s hand pose and enables

the robot to replicate arm motions.

The haptic feedback pipeline uses a GelSight Mini [23]

with a dot-matrix-gel mounted to the robot’s gripper to sense

contact with an object. The GelSight streams the video of

its gel to a transmitter node, which converts the images to a

haptic signal. This haptic signal gets forwarded to the gloves

as vibration feedback. We propose two different methods for

generating the haptic signal: either the Lucas-Kanade optical

motion flow method [24] or a neural network [25] trained to

estimate the force acting on the gel.

For the first method, we track dots on the gel by analyzing

small windows around each dot across consecutive frames.

We then calculate spatial gradients of image intensity within

these windows and relates them to intensity changes over

time, solving for each dot’s motion vector. This results in the

estimated motion of each dot as a 2D vector. We sum the

magnitude of all motion flow vectors to estimate the total force

across the whole sensor. Previous research has shown that

motion flow is an adequate approximation of force [23, 26].

The neural network we used was proposed by [25], using

a similar process as described in [27]. It takes the image of a

GelSight sensor with a dot matrix and outputs shear force and

normal force as a single vector. The magnitude of this vector

is used as the total force.

We apply a threshold to the total force calculated by either

algorithm to prevent the glove from vibrating due to noise

or arm movements. In addition, the values are normalized,

and a log scale is applied so that the haptic feedback range

for smaller forces is larger, assisting with fine control. These

values are sent to the Manus glove, which controls the haptic

motors to vibrate proportional to the total force. The maximum

vibration is reached when the robot presses its fingers together

with the maximum possible force. Communication between

system components is done using the Robot Operating System

(ROS) [28] and shared memory to minimize latency.

III. EVALUATION

To evaluate our system’s strengths and weaknesses, we

conducted a small preliminary user study with 7 participants.

In this study, participants were tasked with using our teleoper-

ation system to pick up a plasticine ball as gently as possible

without dropping it. We conducted trials both with and without

haptic feedback and using balls of various sizes. The extent of

the ball’s deformation served as a quantitative metric for the

users’ ability to execute tasks requiring precise force control.

Preliminary results show that, on average, ball deformation

was reduced by 48% when haptic feedback was enabled.

For the qualitative analysis, we use the NASA Task Load

Index (TLX) [29], evaluating the subjective workload of the

task described above. Preliminary results of the test trial show

that users perceive the haptic feedback as enhancing perfor-

mance, although the increased feedback while performing fine

control using haptic feedback also requires more effort to

handle. Further studies, both on quantitative and qualitative

measurements, are still ongoing.

IV. CONCLUSION

In this work, we developed a teleoperation system in which

users get haptic force feedback through vibration. Our prelim-

inary user study indicates that this haptic feedback improves

dexterity and perceived performance.

In future work, we plan to utilize the rich data of visuotactile

sensors to provide additional haptic feedback to the user, such

as shear forces, slip, and texture, further reducing the reliance

on visual cues. Another exciting avenue for further research is

to utilize these sensors in shared control, e.g., by automatically

adjusting gripping strength based on tactile feedback.
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