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Abstract— We design a tactile sensor roller for detecting defects
on composites in process to improve inspection efficiency and
automation. It obtains depth information of defects through
the deformation of the painted gel elastomer and classic photo-
metric stereo whilst monitoring rolling speed and consolidation
force of the inspection process. We inspect a 35 cm×18 cm×
0.5 mm woven prepreg at three speeds and use three metrics to
assess and compare the reconstructed images of the defects. We
find that the depth maps at the three speeds have similar depth
consistency, and the angular standard deviation and entropy of
the normal map and albedo map at the high speed (47.83 mm/s)
are 22.52% and 51.48% lower than those at the low speed
(11.73 mm/s), respectively.

I. INTRODUCTION

Although non-destructive testing (NDT) like ultrasonic test-
ing (UT) and infrared thermography dominates quality con-
trol of composites [1], they are for post-manufacturing qual-
ity assurance only. A laser line scan sensor (LLSS), an in-
process inspection tool is sensitive to surface properties of
the composites, such as reflectivity, colour and texture. [2].

It is not the first time that tactile perception has been
applied for quality assurance. Elkington et al. [3] proposed
a method using nearest neighbour method to compare differ-
ences in pin positions of the TacTip [4] to identify defects
in the ply during lay-up. Experimental results show that
TacTip is able to detect not only defects on flat composites,
but also fractured with a width of 3.18 mm in automated
fibre placement (AFP). TacTip has also been applied to
check alignment gaps in automotive components with a
width of 0.35 mm by Lepora et al. [5]. They achieved
active sensing for TacTip using Bayes’ theorem based on
the analysis of active sensing sequences. However, TacTip
has low inspection efficiency due to small perceptual area.
In Lepora and Ward-Cherrier’s study [5], TacTip took 750 ms
per click, which means it takes 110 clicks to evaluate one
gap, or 82.5 s.

TouchRoller proposed by Cao et al. [6] addresses the
issue of perceptual efficiency. Its cylindrical shape keeps it
in contact with the detected surface throughout the rolling
movement, thus continuously collecting tactile sensations.
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TouchRoller takes 10 seconds to cover the area that Gel-
Sight takes 196 seconds to cover [7]. However, TouchRoller
failed to acquire depth information on the inspected surface.
Therefore, we arrange three LED beads with different angles
of incidence, allowing the acquisition of depth information
through photometric stereo.
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Experimental scene

Rolling speed, consolidation force and tactile images under three speeds, where  

the time point and force value at which the defect is detected are labelled. 
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Fig. 1: Illustration of the tactile sensor roller detecting composites.
The right side shows the collected data containing tactile images,
rolling speed and consolidation force. Different speeds and contact
forces affecting the image quality can be observed.

To address the dilemma, we propose a vision-based tactile
sensor roller for detecting defects on composites in process as
shown in Fig. 1. It contains a camera, internal light sources,
a speed sensor, a force sensor, an acrylic tube and a painted
gel elastomer insulates external light. As it rolls over the
defect, the elastomer deforms and causes a change in light
and shadow, which is captured by the camera as an input
to photometric stereo for 3D reconstruction while the speed
and force sensors monitor the rolling speed and consolidation
force of the inspection process.

II. METHOD

A. Hardware Design

The internal structure of the tactile sensor roller is shown in
Fig. 2. It is a cylinder with a diameter of 73 mm and a height
of 73.5 mm. The connecting tab is located in the centre. The
camera is pressed down by the top connector to film the
contact area. The bottom connector is mounted below the
force sensor and connects to an M10 wheel on its right side
to transfer force. The red, green and blue LED beads are
affixed to the lower edge of the connecting tab to provide
internal illumination. A fixed camera position, a Lambertian
surface and three point light sources enable the tactile sensor
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Fig. 2: Internal structure of the tactile sensor roller.

roller to acquire depth information of the defects via classical
photometric stereo [8]. The manufacturing cost of one of the
tactile sensor rollers is GBP 58.34, excluding chemicals and
consumables for 3D printing. It has a total of 20 parts, of
which 7 are 3D printed and 13 are outsourced.

B. Software

We measure the rolling speed dividing the length of the gap
on the left wheel by the duration of the light from the photo-
electric sensor is blocked or passed. We use a piezoelectric
sensor to measure consolidation force. It converts mechanical
stress into electrical output. As shown in Fig. 3, we begin
by adjusting the light intensity of the three light sources to
balance the colours of the image captured by the camera.
Then we separate the blue, green, and red channels of the
image while preserving the original dimension. These three
images, a mask image and a light matrix obtained by light
calibration serve as inputs to classical photometric stereo.
The output is a normal map, an albedo map and a depth map,
where the depth map is a greyscale image that indicates the
relative vertical distance from the camera.

Preprocessed imageOrigin image B, G, R channels

Classic

Photometric

Stereo

Normal map Depth mapAlbedo map

�� � 1
ℎ � � � 1	 
�� � �̅��

���

���
� � �	��������

�

���
Γ � 1

ℎ � �	 ������� 
 , "�
#,$

Angular Standard Deviation Entropy Depth Consistency

Assess
Input 

speed

&

force

Fig. 3: Flow of image processing and evaluating. Input the blue,
green, and red channels of the preprocessed image, and the classical
photometric stereo output a normal map, an albedo map, and a
depth map, which are quantified into three metrics: angular standard
deviation, entropy and depth consistency to assess the speed and
force corresponding to the origin image.

III. EXPERIMENT

We place a piece of 35 cm×18 cm×0.5 mm woven prepreg
and set a foreign object and wrinkles at two spots underneath
it as shown in Fig. 1. Franka Emika Panda robot controls
the tactile sensor roller to start at one corner of the woven
prepreg, roll forward to the other end, and roll back from
the other end to complete the exploration.

We use a weighted score of the three metrics to assess
the speed and force corresponding to the input image, i.e.,
angular standard deviation (ASD) of surface normals for the
normal map, entropy to assess the information richness of
the albedo map and global average local variance (GALV)
to assess the consistency of the depth map (Fig. 3). The larger
the value of the metric, the higher the score since it means
that the reconstructed image retains more texture information
of the inspected surface. ASD and entropy are weighted at
40%, and GALV is weighted at 20%.

Fig. 4: Reconstructed images of the defect and at three speeds
(11.73 mm/s,29.99 mm/s and 47.83 mm/s), from left to right are
the tactile image, normal map, albedo map and depth map.

TABLE I: Assessment of reconstructed images at three speeds with
weighted scores.

ASD 40% Entropy 40% GALV 20% Weighted
Score

Low Speed 18.69352 2.69512 106.34231 29.82
Medium Speed 15.52589 2.02573 107.75187 28.57

High Speed 14.48413 1.30771 106.61208 27.64

IV. RESULT

The tactile images and 3D reconstructed images captured
at three speeds are shown in Fig. 4. We find that the
angular standard deviation and entropy at the high speed
(47.83 mm/s) are 22.52% and 51.48% lower than those at
the low speed, respectively, as shown in TABLE I. Image
reconstruction at the low speed performs best under this
scoring system, 4.39% and 7.90% higher than those at the
medium and high speeds, respectively.
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