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Abstract— We present AnyRotate, a system for gravity-
invariant multi-axis in-hand object rotation using dense fea-
tured touch. In our work, We leverage explicit contact features
in simulation to provide rich tactile feedback for training a
policy with Reinforcement Learning. We perform zero-shot
policy transfer to reality by training an observation model to
bridge the sim-to-real gap. In the real world, we successfully
demonstrated that our dense touch policy can generalize to mul-
tiple hand directions for rotating various objects in arbitrary
rotation axes. Interestingly, we found that despite not having
explicit slip detection, rich multi-fingered tactile sensing can
implicitly detect object movement within grasp and provide a
reactive behavior that improves the robustness of the policy,
highlighting the importance of information-rich tactile sensing
for in-hand manipulation.

I. INTRODUCTION

The dexterity of the human hand is fundamental to our
daily routines. From writing with a pen to opening a jar, the
ability to manipulate various objects with different shapes,
sizes, and materials has likewise been a long-standing goal
for robot manipulation [1]. However, these tasks can be
hugely challenging for robot hands due to the high degree
of actuation, fine motor control, and large environmental
uncertainties. Whilst significant advances have been made in
recent years, most prominently the work by OpenAI [2], [3],
they primarily have been relying on vision-based systems
which are not necessarily well suited to this task due to
significant self-occlusion. To overcome this issue, it often
results in complicated setups involving multiple cameras that
are not representative of natural embodiment.

In this paper, we present AnyRotate: a robot system
that can perform multi-axis in-hand object rotation that is
invariant to gravity direction (hand orientation) using only
proprioception and touch. We formulate the problem as con-
tinuous in-hand object rotation via stable precision grasping
without any supporting surface [4]. Our RL formulation uses
an auxiliary subgoal curriculum to train a unified policy that
can achieve object rotation about any arbitrary target rotation
axis relative to the hand. We leverage the highly parallelized
IssacGym simulator [5] and privileged information to train a
policy using a two-stage teacher-student training strategy. To
bridge the sim-to-real gap for tactile observations, we collect
contact data in the real world and train an observation model
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Fig. 1: Robot system setup: A UR5 with a 4-fingered 16-DoF tactile
robot hand performing in-hand object rotation about any chosen axis
and in different hand orientations with respect to gravity.

to extract explicit contact features used in the simulation. We
show that our methodology allows us to train on simple fun-
damental shapes in simulation but generalize to differently
sized-objects in the real world.

II. METHOD

A. Reinforcement Learning

We formulate a finite horizon goal-conditioned Markov
Decision Process (MDP) defined by a continuous state s ∈
S, a continuous action space a ∈ A, a probabilistic state
transition function p(st+1|st, at), a reward function r ∈ R :
S ×A× G −→ R, and a goal space G with goal g ∈ G.

1) Observation Space: The observation Ot contains the
current and target joint position qt, q̄t ∈ R16, previous action
at−1 ∈ R16, fingertip position fp

t ∈ R12, fingertip orientation
fr
t ∈ R16, binary contact ct ∈ [0, 1]4, contact pose Pt ∈ S4,

contact force magnitude Ft ∈ R4, and the desired rotation



axis k̂ ∈ S2. The privileged information provided to the
teacher policy includes object position, orientation, angular
velocity, dimensions, gravity forces on the center of mass,
and the current goal orientation.

2) Action Space: At each time step, the action output
from the policy is the relative joint positions at := ∆θ ∈
R16. To encourage smooth finger motion, we apply an expo-
nential moving average to compute the target joint positions.
The target joint position is then defined as q̄t = q̄t−1 + ãt,
where ãt = ηat + (1− η)at−1.

3) Auxiliary Goal: For training a unified policy for multi-
axis rotations, we design a subgoal curriculum for more effi-
cient training. We frame the object-rotation problem as object
reorientation, where goals are placed about the rotation axis.
The first target is generated by rotating the starting object
orientation by a rotation increment about the rotation axis.
Once the object reaches the target orientation, a new goal
is generated by rotating the previous goal about the desired
rotation axis by a fixed increment. The same operation is
repeated until the episode ends. The rotation increment is
defined as a regular interval.

4) Reward Design: We design a goal-based reward func-
tion to achieve continuous rotation while also avoiding
inefficient hand motion.

r = rrotation + rcontact + rsmooth + rterminate, (1)

where:
rrotation = λkprkp + λ∆rotr∆rot + rgoal,

rcontact = λgcrgc + λbcrbc,

rstable = λωrω + λposerpose + λworkrwork + λtorquertorque,

rterminate = rpenalty

The first part of the reward rrotation is to maintain the contin-
ual object rotation objective. We use a keypoint formulation
λkp to define the distance between the current and target
pose [6]. We also add a sparse reward rgoal when a goal is
reached and a delta rotation r∆rot to encourage continuous
rotation about the target rotation axis. The morphology of
the tactile sensor used here provides the most accurate tactile
sensing information when the contact is normal to the finger-
tip. Therefore, to discourage the robot from leveraging other
parts of the sensor, such as the tip edge or camera casing, we
include a contact reward rcontact which rewards tip contacts
rgc and penalizes contacts with any other parts of the hand
rbc. In the third term of the reward function, we include
a term to encourage stable rotations rstable comprising: an
object angular velocity penalty, rω; a hand-pose penalty on
the distance between the joint position from a canonical pose,
rpose; a controller work-done penalty, rwork; and a torque
penalty rtorque. Finally, we include an early termination
penalty, rterminate, which penalizes the agent (λpenalty = 50)
if the object falls out of the grasp or if the local rotation axis
deviates too far from the global rotation axis.

B. Sim-to-Real Transfer

1) Teacher-Student Distillation: The policy trained in
section II-A uses privileged information in simulation, such

as object properties and auxiliary goal pose. To transfer
this policy to reality, we use policy distillation to train a
student policy that takes proprioception and tactile history
as input to imitate the teacher policy. The student policy
has the same actor-critic architecture as the teacher with
the input at = πθ(Ot, at−1, Zt), where the latent vector
Zt = ϕ(Ot, Ot−1, ..., Ot−n) is the predicted low dimensional
encoding from a sequence of N proprioceptive and tactile ob-
servations. We use a temporal convolutional network (TCN)
encoder for the latent vector function ϕ(x). We randomly
initialize the student encoder network and initialize the policy
network with the weights from the teacher policy. We train
both the encoder and policy network via supervised learning
with the mean squared error (MSE) of the latent vector and
negative log-likelihood loss (NLL) of the action,

L = MSE(zt, z̄t) + NLL(at, āt) (2)

2) Tactile Feature Extraction: The tactile observations
considered here are binary contact, contact pose, and contact
force. We use a threshold on the SSIM between the current
and the reference tactile image to calculate the binary contact
signal. For bridging the sim-to-real gap of the remaining
tactile observations, we adopt the sim-to-real framework
from Ref. [7] where we use a trained observation model
to perform zero-shot sim-to-real policy transfer. Given a real
tactile image, we train a CNN model to extract the explicit
features of contact force and contact pose. For contact pose,
we use spherical coordinates to simplify contact definitions
and use the contact pose variables polar angle Rx and
azimuthal angle Ry relative to the fingertip origin. The
predicted contact force variable is the total force magnitude
of the contact. We also use the binary contact signal to mask
the contact force and pose predictions.

III. RESULTS AND CONCLUSION

In the real world, we use the setup shown in 1. We
compare three policies with different observation inputs,
proprioception, binary touch (proprioception and binary con-
tact), and dense touch (proprioception, binary contact, con-
tact pose and contact force). We find that the policy trained
with dense featured touch performed the best in the real
world, demonstrating a successful sim-to-real transfer of our
dense tactile representation. In noisy environments where
the hand is in different orientations, a policy provided with
tactile observations exhibited more stable rotating behavior
and outperformed proprioception alone. In cases where the
hand gets stuck at grasping the object firmly with not
much rotation, an agent with tactile observation was able
to increase finger movement to break contact.

While our investigation has focused on a specific case of
in-hand manipulation using tactile sensing, we expect that
the opportunities extend far beyond our demonstrations. The
capability to manipulate objects effortlessly in free space
with a sense of touch mirrors an intuitive skill of human
dexterity. We hope that our research spurs continued efforts
to reach a level of robot hand dexterity comparable to that
of the human hand.
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