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Abstract—Tactile feedback is critical for understanding the
dynamics of both rigid and deformable objects in many ma-
nipulation tasks, such as non-prehensile manipulation and dense
packing. We introduce an approach that combines visual and
tactile sensing for robotic manipulation by learning a neural,
tactile-informed dynamics model. Our proposed framework,
RoboPack, employs a recurrent graph neural network to estimate
object states, including particles and object-level latent physics
information, from historical visuo-tactile observations and to
perform future state predictions. This dynamics model, learned
from real-world data, can solve downstream robotics tasks with
model-predictive control. We demonstrate our approach on a real
robot equipped with a compliant Soft-Bubble tactile sensor on
non-prehensile manipulation and dense packing tasks. Trained
on only an average of 30 minutes of real-world interaction data
per task, our model can perform online adaptation and make
touch-informed predictions. Our method demonstrates superior
effectiveness compared to previous learning-based and physics-
based simulation systems. See the supplementary material for
additional analysis and full technical details.

I. INTRODUCTION

Imagine packing an item into a nearly full suitcase. As
humans, we typically first form a visual representation of the
scene and then make attempts to insert the object, feeling the
compliance of the objects already inside to decide where and
how to insert the new object. If a particular region feels soft,
we can then apply additional force to make space and squeeze
the new object in. This process is natural for us humans but
very challenging for current robotic systems.

What would it take to produce adept packing capabilities
in robots? Firstly, a robot needs to understand how its actions
will affect the objects in the scene and how those objects will
interact with each other. Second, it should be able to estimate
unobserved physics properties of objects, such as friction and
deformability, to perform dynamics prediction for accurate
planning. Third, in scenarios where visual observations are
hindered by significant occlusions, the robot should adeptly
utilize tactile signals to perceive the environment.

In this work, we propose RoboPack, a framework that inte-
grates a learned tactile-informed dynamics model with model-
predictive control (MPC) to achieve challenging robotics tasks.
We use the SoftBubble tactile sensor [20] to perceive the force
applied to the gripper, integrate the force reading with our
particle-based object representation, and then perform state
estimation and dynamics prediction for planning.
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Fig. 1: Dense packing. We use compliant tactile sensors
to provide crucial information to a robot to perform dense
packing tasks, such as placing a can into a packed tray with
both rigid and deformable objects.

We deploy RoboPack on two real-world settings—a tool-use
manipulation and a dense packing task. These tasks involve
multi-object interactions with complex dynamics that cannot
be determined from vision alone. We find that our method can
successfully leverage histories of visuo-tactile information to
improve prediction, with just 30 minutes of interaction data
per task for training.

II. METHOD

The objective of RoboPack is to manipulate objects with
unknown physical properties in environments with heavy
occlusions like dense packing. To formulate this problem, we
define the observation space as Ø, the state space as S, and
the action space as A. Our goal is to learn a state estimator g
that maps Ø to S and a transition function T : S ×A → S.

Our system has four main components: perception, state
estimation, dynamics prediction, and model-predictive control.

First, the perception system extracts particles from the scene
as a visual representation ovis and encodes tactile readings into
latent embeddings otact attached to those particles.

Secondly, the state estimator g infers object states s from
any prior interactions, which includes a single visual frame
ovis0 , the subsequent tactile observations otact0:t , and the corre-
sponding robot actions a1:t−1:

ŝt = g(ovis0 , otact0:t , a1:t−1).

Thirdly, to enable model-predictive control, we learn a
dynamics prediction model f that predicts future states given



the estimated current states and potential actions:

ŝt+1 = f(ŝt, at).

Lastly, the future predictions are used to evaluate and optimize
the cost of sampled action plans. The objective is to find
a sequence of actions a0, a1, ..., aH−1 to minimize a cost
function J between the final states and a given target state
sg:

(a0, ..., aH−1) = argmin
a0,...,aH−1∈A

J (T (s0, (a0, .., aH−1)), sg).

The robot executes the best actions and receives tactile feed-
back from the environment, with which it updates its estimates
about object properties. Details of the implementation of these
modules are provided in Appendix B.

III. EXPERIMENTS

In this section, we investigate the following questions.
i. Does integrating tactile sensing information from prior

interactions improve future prediction accuracy?
ii. Do the latent representations learned by tactile dynamics

models discover meaningful properties such as the phys-
ical properties of objects?

iii. Does our tactile-informed model-predictive control
framework enable robots to solve tasks involving objects
of unknown physical properties?

We compare our approach against three baselines:
i. RoboPack (no tactile): To study the effects of using tac-

tile sensing in state estimation and dynamics prediction.
ii. RoboCook + tactile: This approach differs from ours

in that it treats the observations, i.e., visual and tactile
observations ⟨ovis, otact⟩, directly as the state representa-
tion. This can be viewed as an adaptation of previous
work [28, 48, 50, 49] to include an additional tactile
observation component. With this baseline, we seek to
study different state representations and our strategy of
separating state estimation from dynamics prediction.

iii. Physics-based simulator: We also compare our method
to using a physics-based simulator [2] for dynamics
prediction after performing system identification.

We answer these questions via empirical evaluation of two
tasks, Non-Prehensile Box Pushing where the robot pushes a
box with unknown mass distribution to a target configuration
with a loosely held in-hand object, and Dense Packing where
the robot inserts an object into a nearly full box and the key
is to identify insertable region via tactile sensing.

A. Evaluating Dynamics Prediction

Results are summarized in Table I. On the Non-Prehensile
Box Pushing task, RoboPack is significantly better than alter-
native methods. For the Dense Packing task, our model out-
performs the best baseline on the pushing task, RoboPack (no
tactile). This shows that integrating history tactile information
is helpful to dynamics prediction.

Task Method MSE *1e-3 ↓ Success Rate ↑

RoboPack 1.48 ± 0.14 80%
Box RoboPack (no tactile) 1.75 ± 0.15 40%

Pushing RoboCook + tactile 2.11 ± 0.17 30%
Physics-based sim. 2.65 ± 0.18 50%

Dense RoboPack 0.070 ± 0.005 80%
Packing RoboPack (no tactile) 0.088 ± 0.006 40%

TABLE I: Long-horizon dynamics prediction results and
robotic task performance on the two tasks. Errors represent
a 95% confidence interval.

B. Analysis of Learned Physics Parameters

To answer the second question, we first attempt to train a
linear classifier that predicts the box type from the generated
latent physics vectors ξt. We find that the accuracy of such a
classifier increases as the amount of historical interaction pro-
vided to the representation grows. Qualitatively, we can also
observe that the model learns distinguishable latent vectors for
different box types, showing that the model learns meaningful
properties of objects without explicit supervision from data.
Details on the analysis are provided in Appendix G-D.

C. Benchmarking Real-World Planning Performance

Next, we evaluate the performance of our approach in
solving real-world robotic planning tasks. Quantitative results
are presented in Table I.

For Non-Prehensile Box Pushing, we can see that our
method has the highest success rate across all box config-
urations. On the Dense Packing task, we compare against
the best method on object pushing, i.e., the physics-based
simulator. However, it is not feasible to obtain corresponding
object models for the diverse and complex objects in this
task, so we use RoboPack (no tactile) as the baseline. We
test both methods on packing in 15 object configurations and
they achieve success rates of 80% and 40% respectively. This
shows that our method is much more effective in identifying
objects that are deformable or pushable, which consequently
enables the robot to insert the object at feasible locations.

IV. DISCUSSION

We presented RoboPack, a framework for learning tactile-
informed dynamics models for manipulating objects in multi-
object scenes with varied physical properties. By integrat-
ing information from prior interactions from a compliant
visual tactile sensor, our method adaptively improves pre-
dicted dynamics, resulting in improved physical prediction
and downstream planning performance on two challenging
manipulation tasks, Non-Prehensile Box Pushing and Dense
Packing. We hope that this is a step towards robots that can
seamlessly integrate information with multiple modalities from
their environments to guide their decision-making.
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APPENDIX A
RELATED WORK

A. Learning Dynamics Models

Simulators developed to model rigid and non-rigid bodies
approximate real-world physics, often creating a significant
sim-to-real gap [56, 14, 39]. To address this, we use a graph
neural network (GNN)-based dynamics model trained directly
on real-world robot interaction data, aligning with data-driven
approaches for learning physical dynamics [41, 35]. Recent
works have demonstrated inspiring results in learning the
complex dynamics of objects such as clothes [33], ropes [4],
and fluid [24], with various representations including low-
dimensional parameterized shapes [36], keypoints [29], latent
vectors [22], and neural radiance fields [30]. RoboPack, in-
spired by previous works [27, 47, 1], focuses on the struc-
tural modeling of objects with minimal assumptions about
underlying physics. This approach overcomes the limitations
of physics simulators by directly learning from real-world dy-
namics. Prior work on GNN-based dynamics learning [48, 49,
50, 54, 5] heavily relies on visual observations for predicting
object dynamics, failing to capture unobserved latent vari-
ables that affect real-world dynamics, such as object physical
properties. To address this challenge, our method incorporates
tactile sensing into dynamics learning and leverages history
information for state estimation, offering a robust solution to
overcome the constraints of vision-only models.

B. Model-Free and Model-Based Reinforcement Learning

Reinforcement learning (RL) aims to derive policies di-
rectly from interactions. Our method contrasts with model-
free RL approaches [38, 31, 10, 16, 25], by incorporating
an explicit dynamics model, enhancing interpretability and
including structured priors for improved generalization. Our
work is closer to model-based RL [13, 11, 40, 46, 37, 61]
in that we combine learned world models with planning via
trajectory optimization. In particular, we learn world models in
an offline manner from pre-collected interaction data, avoiding
risky trial-and-error interactions in the real world. However,
our approach is different from existing offline model-based
RL [45, 58, 8, 12] as it leverages multiple sensing modalities,
i.e., tactile and visual perception. This multi-modal approach
provides a more comprehensive understanding of both global
geometry and the intricate local physical interactions between
the robot gripper and objects. Moreover, our method addresses
challenges in scenarios where visual observations are not
always available. It uses tactile observation histories to esti-
mate partially observable states, enabling online adaptation to
different dynamics. This integration of offline model learning,
multi-modal perception, and online adaptation equips our
system with adaptive control behaviors for complex tasks.

C. Tactile Sensing for Robotic Manipulation

Tactile sensing plays an important role in both human and
robot perception [6]. Among all categories of tactile sensors,
vision-based sensors such as [59, 7, 23, 32] can achieve
accurate 3D shape perception of their sensing surfaces. In

our work, we use the Soft-Bubble tactile sensor [20] which
offers a unique combination of compliance, lightweight design,
robustness to continuous contact, and the ability to capture
detailed geometric features through high-resolution depth im-
ages [19, 52]. Previous studies have successfully integrated vi-
sion and tactile feedback in robotic manipulation using parallel
grippers [3, 9, 26] and dexterous hands [44, 53, 60]. In these
tasks, vision effectively offers a comprehensive understanding
of the scene’s semantics, while tactile sensing delivers accurate
geometry estimation for objects in contact that are often
occluded. In our study, we explore the potential of integrating
vision and tactile feedback for learning dynamics in tasks
involving rich contact, occlusions, and a diverse set of objects
with unknown physical properties, such as box pushing and
dense packing.

APPENDIX B
METHOD

A. Perception

1) Visual Perception: Our visual perception module extends
the formulation of D3Fields [55], with an additional deforma-
tion term to handle non-rigid objects and mask-based closeness
loss to better support multi-object scenes with occlusion. As
shown in Figure 2(a), it takes in multi-view RGB-D obser-
vations and outputs tracked 3D keypoints for each object of
interest. Critically for our training procedure, these keypoints
maintain correspondences over time—a tracked point stays at
the same region of an object throughout the trajectory.

First, we extract visual features for each object with a pre-
trained DINOv2 model [42] and masks using GroundedSAM
[43, 18, 34]. Through projection and interpolation, we can
then compute semantic, instance, and geometric features for
arbitrary 3D points. We initialize desired tracking points on
object surfaces for an initial frame and formulate 3D keypoint
tracking for subsequent frames as an optimization problem.
The tracking objective has the following terms:

• Distance to surface. Use depth information to encourage
points to be close to object surfaces.

• Semantic alignment. Align DINOv2 features between
projected points in the current and initial frame.

• Motion regularization. Penalize large motion between
consecutive frames to avoid jitter.

• Mask consistency. For multi-object packing settings with
significant occlusion, we introduce an objective that con-
strains tracked points to be near the corresponding object
masks, providing more consistent optimization signal for
object pose than semantic alignment.

We optimize a translation and rotation transformation for
each object with this objective. For deformable objects, we
also predict axis-aligned shearing scales apart from a rigid
transformation to track deformations.

2) Tactile Perception: As shown in the top right of Figure 2,
our tactile perception module takes global force-torque and
local force vectors as input and outputs embeddings for the
tactile reading. Each Soft-Bubble tactile sensor provides its



𝑡

Le
ft

R
ig

ht

Latent Physics Vector
Position

Action
Tactile Encoding

Subsample

Encode

(a) 3D Point Tracking on Point Cloud Observations (b) Scene Representation

𝑜!"#$

Segment Segment Segment

𝑜%&"#$ 𝑜'!"#$

𝑜'!()*(

Read

Fig. 2: RoboPack’s perception module. (a) We construct a trajectory comprising particle representations of the scene,
maintaining correspondence via 3D point tracking on the point cloud data. (b) These particles facilitate the creation of a
visual scene representation, denoted as ovist . For points representing the Soft-Bubble grippers, tactile encodings otactt and latent
physics vectors are integrated as extra attributes of the particles.

surface force distribution. This includes (1) shear force vectors
{⟨qxi,j , q

y
i,j⟩}i,j , where i, j is the coordinate of a point on the

2D surface of the bubble and x, y denote the vertical and
horizontal axis of the tangent plane at that point, as well as
(2) a global shear force torque vector and the overall force
magnitude ⟨Qx, Qy, |Q|⟩. F x, F y are the mean of local force
vectors across spatial dimensions, and |Q| is defined as

|Q| =
√
max
i,j

|qxi,j |
2
+max

i,j
|qyi,j |

2
, (1)

where H and W are tactile reading’s spatial dimensions.
3) Integrating Visual and Tactile Perception: As depicted

in Figure 2(b), to integrate tactile observations with particle-
based object representation, we first extract particles from the
surface of the soft-bubble gripper by projecting the depth
camera reading inside the gripper into 3D space. Next, we
define a point-wise tactile signal as ⟨qxi,j , q

y
i,j , Q

x, Qy, |Q|⟩
and train an auto-encoder that projects the point-wise signals
independently into latent embeddings. We denote the collec-
tion of embeddings as the tactile observation otact. Lastly, we
combine the object particles from the visual observation ovis

with the tactile sensor particles otact to form a unified particle
representation of the scene.

B. State Estimation and Latent Physics Vector Inference

In real-world robotic manipulation, visual observations are
not always available due to occlusion, but knowledge about
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Fig. 3: RoboPack’s dynamics module. We perform state
estimation and dynamics reasoning with a state estimator
and a dynamics predictor respectively. They share the same
architecture, except that the state estimator has an LSTM
module that integrates history information and predicts physics
parameters for each object in the scene.

object dynamics requires interactive feedback. In this work,
we leverage tactile feedback to help estimate world states.

History information is often used to estimate the current
state in POMDPs [15, 21, 51]. Similarly, we seek to incor-
porate tactile history information into state estimation by em-
ploying a combination of graph neural networks (GNNs) and
long-short term memory (LSTM), as shown in Figure 3(a). We



define our state as a tuple of object particles and an object-level
latent physics vector, which capture the geometry and physics
properties of objects respectively. In the following paragraphs,
we describe how our method performs state estimation using
history information and future prediction.

At time 0 < t ≤ T , our state estimator g infers all
states for t = 1, ..., T autoregressively. Given the estimated
previous state ŝt−1 and the tactile feedback at the previous
and the current state otactt−1:t, we construct a graph Gt−1 =
⟨Vt−1, Et−1⟩ with Vt−1 as vertices and Et−1 as edges. For
each node, vi,t−1 = ⟨xi,t−1, c

o
i,t−1⟩, where xi,t−1 is the

particle position i at time t−1, and coi,t−1 are particle attributes.
The particle attributes contain (1) the previous and current
tactile readings, otactt−1:t, and (2) the latent physics vector of
the object that the particle belongs to, ξi,t−1, where i is the
object index corresponds to the i-th particle, 1 ≤i≤ Z and
Z is the maximum number of objects in the scene. Formally,
coi,t−1 = ⟨ξt−1, o

tact
t−1:t⟩. Note that here we implicitly assume

that is constant (i.e., objects only exhibit elastic and plastic
deformations but not break apart), which generally holds for a
large number of common manipulation tasks. Moreover, edges
between pairs of particles are denoted ek = ⟨uk, vk⟩, where uk

and vk are the receiver and sender particle indices respectively,
and 1 ≤ uk, vk ≤ |Vt−1| where k is the edge index. We
construct graphs by connecting any nodes within a certain
radius of each other.

Given the graph, we first use a node encoder fenc
V and

an edge encoder fenc
E to obtain node and edge features,

respectively:

hv
i,t−1 = fenc

V (vi,t−1), he
k,t−1 = fenc

E (ek,t−1). (2)

Then, the features are propagated through the edges in
multiple steps, during which node effects are processed by
neighboring nodes through learned MLPs. We summarize this
procedure as fdec

E , which outputs an aggregated effect feature
for each node called ϕi:

ϕi,t−1 = fdec
E (hv

i,t−1,
∑
k∈i

he
k,t−1)k=1,...,|Et−1|. (3)

where i is a set of relations with particle i as the receiver.
Next, the model predicts node (particle) positions and

updates the latent physics vector:

ôvisi,t = fdec
V

(
hv
i,t−1, ϕi,t−1

)
i=1,...,|Vt−1|

, (4)

ξη,t,mt = fdec
ξ

∑
i

i=η

hv
i,t−1,

∑
i

i=η

ϕi,t−1,mt−1


η=1,...,Z

(5)

where fdec
ξ is an LSTM, mt is its internal cell state at the

current step, and ξη,t is the updated physics latent vector for
η-th object. At t = 0 the LSTM state m0 is initialized as zero.
The physics vector for each object is initialized as Gaussian
noise: ξη,0 ∼ N (0, 0.12) for all η. All other encoder and
decoder functions (i.e., fenc

V , fdec
V , fenc

E , and fdec
E ) are MLPs.

C. Dynamics Prediction

After the state estimator produces an estimated state ŝT =
⟨ôvisT , ξT ⟩ from the T -step history, our dynamics model pre-
dicts into the future to evaluate potential action plans. The
dynamics predictor f is constructed similarly to the state
estimator g, with two key differences: (i) it does not use
tactile observations as input, and (ii) it is conditioned on
frozen physics parameters estimated by g. Figure 3 illustrates
this process. The forward prediction happens recursively: For
a step t > T , we construct a graph in the same way as
in Section B-B, but excluding tactile observations from the
particle attributes, i.e., coi,t = ξt. Then, the dynamics predictor
infers the particle positions at the next step ôvist+1 as formulated
in Equations 2-4. The final state prediction is then ŝt+1 =
⟨ôvist+1, ξt⟩. Note that the estimated physics parameters are not
modified by the dynamics predictor.

Training procedure and objective. We train the state
estimator and dynamics predictor jointly end-to-end on tra-
jectories of sequential interaction data containing observations
and robot actions. For a training trajectory of length H , the
state estimator estimates the first T states, and the dynamics
predictor predicts all remaining states. The estimation and pre-
diction are all computed autoregressively. The loss is computed
only on visual observations:

L =
1

H

H−1∑
t=0

||ôvist − ovist ||22. (6)

Previous works [48, 50, 49] use the earth mover’s distance
(EMD) or chamfer distance (CD) as the training loss, but these
provide noisier gradients because EMD requires estimating
point-to-point correspondence and CD is prone to outliers.
Instead, we use mean squared error (MSE) as the objective,
enabled by the point-to-point correspondences from our 3D
point tracking (Section B-A). The details of the architecture
and training procedure of the state estimator and dynamics
predictor are in Appendix C-B.

Note that the learning of the latent physics information is
not explicitly supervised. The model is allowed to identify any
latent parameters that enhance its ability to accurately estimate
the current state and predict future outcomes. We provide an
analysis on the learned physics parameters in Section III.

D. Model-Predictive Control

With the learned state estimator and dynamics predictor,
we perform planning toward a particular goal by optimizing a
cost function on predicted states over potential future actions.
Concretely, we use Model Predictive Path Integral (MPPI) to
perform this optimization [57].

Planning begins with sampling actions from an initial dis-
tribution performing forward prediction with the dynamics
models. The cost is then computed on predicted states. Based
on the estimated costs, we re-weight the action samples by
importance sampling and update the distribution parameters.
The process repeats for multiple interactions and we select the
optimal execution plan.



For computational efficiency, we execute the first K plan-
ning steps. While executing the actions, the robot records its
tactile readings. After execution, it performs state estimation
with the history of observations and re-plans for the next
execution. More implementation details on planning can be
found in Appendix F.

To summarize this section, a diagram of the entire system
workflow including training and test-time deployment is avail-
able in Figure 5.

APPENDIX C
MODEL ARCHITECTURE AND TRAINING

A. Tactile Autoencoder

Both the encoder and decoder are two-layer MLPs with
hidden dimension 32 and ReLU activations. The encoder
maps the raw point-wise tactile signal to latent space, then
the decoder maps it back to the original dimension. The
autoencoder is trained with MSE loss using the following
hyper-parameters:

Hyperparameter Value

Learning rate 5e-4
Optimizer Adam [17]
Batch size 32
Latent space dimension 5

TABLE II: Hyperparameters for auto-encoder training.

B. State Estimator and Dynamics Predictor

We use the same hyperparameters to train dynamics models
for the nonprehensile box pushing and dense packing tasks,
which are shown in Table III For graph construction, we
connect any points within a radius of 0.15. We train the
state estimator and dynamics model jointly, using sequences
of length 25. To prevent the model from overfitting to a
specific history length, which could vary at deployment time,
we use the first k steps in a sequence as the history, k ∼
Uniform(0, 24). To stabilize training, we restrict the magnitude
of the rotation component of predicted rigid transformations
for a single step to be at most 30 degrees, which is much larger
than any rotation that occurs in our datasets. Model training
converges within 25 and 8 hours on the two tasks respectively
with one NVIDIA RTX A5000 GPU.

For baselines RoboPack (no tactile) and RoboCook + tactile,
we performed a hyper-parameter sweep and the optimal train-
ing parameters are the same as RoboPack described above.

APPENDIX D
HARDWARE SETUP

The hardware setup is depicted in Figure 4.
Robot. We use a Franka Emika Panda robot arm, controlled

using the Deoxys open-source controller library [62]. In our
experiments, we use the OSC_POSITION and OSC_YAW
controllers provided by the Deoxys library.

Sensors. We attach the Soft-Bubble sensors to the Franka
Panda gripper using custom-designed 3D-printed adapters. We
inflate both Soft-Bubble sensors to a width of 45mm measured

Hyperparameter Value

Learning rate 5e-4
Optimizer Adam [17]
Batch size 4
Graph construction criteria Radius
Graph connection radius 0.15m
Training sequence length 25 steps
Training history length 15 steps
# graph points per object 20
# graph points per tactile sensor 20
Node encoder MLP width 150
Node encoder MLP layers 3
Edge encoder MLP width 150
Edge encoder MLP layers 3
Edge effect MLP width 150
Edge effect MLP layers 3
Edge propagation steps 3
Latent physics vector size (dim(ξ)) 16
Tactile encoding dimension (per point in otact) 5

TABLE III: Hyperparameters for dynamics model training.
We use the same hyperparameters for the nonprehensile box
pushing and dense packing tasks.

Fig. 4: Hardware overview. Our experimental platform con-
sists of a Franka Panda arm, two Soft-Bubble grippers, four
RealSense D415 RGBD cameras, and a diverse set of objects.

from the largest distance sensor frame to the rubber sensor
surface. While there can be slight variations in the exact
amount of air in the sensor due to measurement error, we
do not find this to be a significant cause of domain shift for
learned models, likely because the signals that are used as
input to our model are largely calculated using differences
between the current reading and a reference frame captured
when the gripper does not make contact with any object that
we reset upon each inflation. While we contribute a novel
method for integrating tactile information into the particle-
based scene representation, the computation of raw tactile
features is computed by the Soft-Bubble sensor API [20] and
is not part of our contribution.
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APPENDIX E
SYSTEM WORKFLOW

To present the offline training and online planning processes
more clearly, a system diagram is provided in Figure 5.

APPENDIX F
PLANNING IMPLEMENTATION DETAILS

We provide hyperparameters for the MPPI optimizer that is
used for planning with learned dynamics models in Table IV.
We use the same planning hyperparameters for baselines as
we do our method.

Hyperparameter Box pushing Dense packing

History length 22 25
Action sampler temporal correlation β* 0.2 N/A
MPPI # action samples 400 150
MPPI action horizon 20 80
MPPI # iterations 2 1
MPPI scaling temperature γ* 100 N/A
# steps executed before replanning K 20 45

TABLE IV: Hyperparameters for real world planning experi-
ments. For the parameters denoted by *, we use the notation
from Nagabandi et al. [41]. K refers to the number of steps in
the best plan found that is actually executed on the real robot
before replanning. For box pushing it is the entire plan, while
for dense packing it is 45 out of 80 steps.

APPENDIX G
EXPERIMENTS

A. Box Configurations
For the non-prehensile box pushing task, we use boxes that

have the same geometry different weight configurations to test
the ability of each model to adapt its prediction based on
the physical characteristics of each scenario. Specifically, we
empty cardboard boxes of dimensions 18× 9.5× 3.8 cm, and
then add metal weights in the following configurations:

• Box 1: Two 100g weights placed at opposing corners of
the box.

• Box 2: One 200g weight placed at the geometric center
of the box.

• Box 3: No additional weight added.
• Box 4 (unseen during training): This is the original

unmodified box, which contains roughly uniformly dis-
tributed food items. The items are not affixed to the inner
sides of the box, and there could be relative movement
between the box and its contents if force is applied.

B. Qualitative Results on Planning
Additional qualitative results on non-prehensile box pushing

and dense packing are presented in Figure 7 and Figure 8
respectively. Please additionally see our supplementary video
for video examples of planning executions.

C. Physics-Based Simulator Baseline
Here we provide additional details about the physics-based

simulator baseline used for the box pushing experiments in
Section III.



First, we construct a 2D version of the task in the open
source Pymunk simulator [2] that emulates a top-down view
of the real scene. The simulated scene contains replicas of the
rod and box produced by measuring the dimensions of the real
versions of those objects.

Then, given two visual observations ovisinit and ovisfinal(tracked
points for each object) and a sequence of actions a⃗ taken
by the robot, we perform system identification to optimize
simulated parameters to fit the real system. Note that our
method also uses only two visual observations from the
history, but also can use tactile information. Because tactile
simulation is not available, the baseline has access to just
visual observations. To convert tracked points from real ob-
servations into simulator states, we project all points into 2D
by truncating the z dimension, and then for each object we
compute the object center with the spatial mean of points and
the 2D rotation by finding the first two principal components
of the 2D points with PCA. Thus the visual observations
are converted into tuples (posrodinit, rot

rod
init), (pos

box
init, rot

box
init),

(posrodfinal, rot
rod
final), (pos

box
final, rot

box
final).

We optimize a vector of parameters µ⃗ ∈ R5, detailed in
Table V. We de-normalize values from m⃗u to the actual system
parameters and clamp them to prevent unrealistic values based
on the minimum and maximum values shown. The initial
standard deviation for optimization is σ = 0.3, which we
found to work well empirically. The objective function is

L(µ⃗) = ∥(posboxfinal, rot
box
final)− SIMµ⃗(posinit, rotinit, a⃗)∥2.

where SIMµ⃗(pos, rot, a⃗) represents the box position and
rotation after running a simulated trajectory with actions a⃗
in the Pymunk simulator starting from box and rod positions
pos and rotations rot with simulator parameters set to µ⃗.

We optimize the objective using CMA-ES, a gradient free
optimizer, using the implementation from https://github.com/
CyberAgentAILab/cmaes. Parameters are initialized to have
the center of mass at the center of the object uniformly
distributed mass, and reasonable friction and mass defaults.
We use a population size of 8 based on the implementation-
suggested default of 4+⌊3∗ log(ndim)⌋ and optimize for 100
generations.

Finally, we use the optimized set of parameters to perform
forward prediction. After forward prediction, we convert the
sequence of simulated 2D object positions into a sequence
of pointcloud predictions by estimating a rotation matrix and
translation (in 2D) and applying them to the 3D pointcloud
for the initially provided observation. The z values (height)
of all particles are assumed to be fixed at their initial values
throughout the prediction.

D. Analysis of Learned Physics Parameters

In this subsection, we seek to provide some quantitative
and qualitative analyses of the latent representation learned by
the state estimator. As it gives more direct control of object
properties, we use our dataset collected for the Non-Prehensile
Box Pushing task for the analysis.

To understand if the representation contains information
about box types, we first attempt to train a linear classifier to
test if there the features learned for different boxes are linearly
separable in the latent space. We test the state estimator
on 145-step trajectories in the testing data, which typically
involves three to five pushes on the box. The classification
accuracy of physics parameters ξt as more and more in-
teraction information is processed is shown in Figure 6. It
can be observed that as history information accumulates, the
latent physics vectors become more indicative of the box
type. In particular, the state estimator can extract considerable
information in the first 20 steps, which is approximately the
average number of steps it takes to complete an initial push.
Furthermore, note that the state estimator only observes a
history of no more than 25 steps during training, but it can
generalize to sequences four times longer in this case.

To qualitatively inspect the learned representations, we
perform principal component analysis, reducing the learned
latent vectors from R16 to R2. Figure 6 shows the low-
dimensional embeddings as the number of interaction time
steps incorporated into the latents grows. We can see that
as time progresses, the estimated latents become increasingly
separated into clusters based on the physical properties (i.e.,
mass distributions in this case) of the manipulated object. The
separation increases the most between t = 1 and t = 20,
which is consistent with our observation in Figure 6 that longer
histories than a certain threshold yield marginal returns.

Collectively, the results indicate that our state estimator
indeed learns information related to physical properties based
on interaction histories.

APPENDIX H
TRACKING MODULE DETAILS

After sampling initial sets of points for each object p⃗init,
we formulate point tracking as optimization for the points at
each step p⃗. Specifically, the new points are computed as a
3D transformation of the points output at the previous step,
represented by a rigid rotation R ∈ R3, translation T ∈ R3

and optional per-axis shearing S ∈ R3. The transform is a
composition of rotation by R, scaling by S, and translation
by T in that order. We abuse notation to sometimes use p⃗ for
ease of reading, but p⃗ is a function of the actual optimized
parameters R,S, T . Thus the optimization objective has the
following loss terms:

1) Distance to surface.

Ldepth(p⃗) =
1

|p⃗|
∑
p∈p⃗

max(0, depthinterp(p)−depthproj(p⃗))

where depthinterp(p) is the depth estimation from inter-
polating information from multi-view depth observations,
and depthproj(p⃗) is the expected depth at each point when
projected into each camera frame.

2) Semantic alignment.

Lalign(p⃗) =
1

|p⃗|
∑
p∈p⃗

min(∥dinov2(pinit)−dinov2(p)∥2, 30)

https://github.com/CyberAgentAILab/cmaes
https://github.com/CyberAgentAILab/cmaes


Hyperparameter Initial value Min Max Optimization space µ to sim. param p transform

Box mass 10 0.001 N/A p = 10(µ+ 1)
Box friction 0.5 0.0001 N/A p = 0.5(µ+ 1)
Moment of inertia 34520.83 10 N/A p = 35420.833(µ+ 1)
Center of gravity x 0 -42.5 42.5 p = 42.5µ
Center of gravity y 0 -90 90 p = 90µ

TABLE V: Parameters optimized during system identification for the physics-based simulator baseline. Initial values and scales
are set such that when the parameters in the optimization space are µ⃗ = 0, the actual values in the physics simulator p⃗ are
sensible defaults (see initial value column). Note for center of gravity, (0, 0) refers to the geometric center of the object.
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Fig. 6: Analysis of learned physics parameters. We assess our state estimator across 145-step trajectories and record the
estimated physics parameters at each step. PCA visualizations at four distinct timesteps show that the physics parameters
gradually form clusters by box type. We also employ a linear classifier trained on these parameters to accurately predict box
types to demonstrate these clusters’ linear separability. The classifier’s improving accuracy across timesteps underscores the
state estimator’s proficiency in extracting and integrating box-specific information from the tactile observation history.

where dinov2(p) represents the multi-view interpolated
DinoV2 feature at the 3D point represented by p, and
again pinit is the position of the point in the first frame
(not necessarily immediately prior frame) of tracking.

3) Motion regularization.

Lreg(R, T, S) = wT
reg∥R∥2 + wT

reg∥T∥2 + wS
reg∥S∥2.

Motion regularization prevents tracked points from ex-
hibiting high frequency jitter when the objects they are
tracking do not move.

4) Mask consistency. We introduce a mask consistency loss.
Intuitively, this loss tries to ensure that each pixel within
a 2D mask for an object from a particular camera view
should have a tracked point for that object that is close
to that pixel when projected into that view.
Let the set of all views be V and the set of object masks
in a particular view v be M(v). Then the total number
of masks points N is N =

∑
v∈V

∑
obj∈M(v) |obj|.

Concretely, this can be written as:

Lmask(p⃗) =
1

N

∑
v∈V

∑
obj∈M(v)

∑
pix∈obj

min
p∈p⃗obj

∥pix−proj(p, v)∥

where proj(p, v) is the 2D projection of 3D point p into
the image space of viewpoint v.

Hyperparameter Box pushing Dense packing

Optimizer Adam Adam
LR schedule Reduce on plateau Reduce on plateau
Grad steps 200 200
Learning rate (T) 0.04 0.01
Learning rate (R) 0.04 0.1
Learning rate (S) 0.04 0.01
Use scale term No Yes
wdepth 1 1
walign 1 1
wT

reg 1e-3 3e3
wR

reg 1e-3 1e2
wS

reg N/A 3e3
wmask 100 15

TABLE VI: Loss weights for the tracking module.

The overall objective is computed by weighting and combining
these terms:

Ltracking = wdepthLdepth + walignLalign+

+ wregLreg + wmaskLmask

The weights for each term as well as optimizer parameters
are enumerated in Table VI. The transformed points with the
best loss after the total number of gradient steps is complete
is output as the result.
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Fig. 7: Non-prehensile box pushing. We demonstrate our robot can push a box with unknown mass distribution from a
starting pose to a target pose. Note that our box pushing is non-prehensile because the in-hand object is not fixed. We show
that our method can generalize to unseen initial and target box poses in the first two rows and also previously unseen box
configurations in the third row. A green arrow indicates the box’s orientation, so boxes in rows 1 and 3 are flipped vertically.
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Fig. 8: Dense packing with diverse object sets. In the Dense Packing task, we demonstrate that RoboPack effectively identifies
feasible insertion rows in a tray, minimizing excessive force on the robot to prevent hardware damage. The first row presents
a set of objects from data collection, while subsequent rows illustrate our method’s capability to adapt to objects with various
visual appearances and different levels of deformability.
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