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Abstract— In this study, we introduce a new soft biomimetic
optical tactile sensor based on mimicking the interlocking struc-
ture of the epidermal-dermal boundary: the BioTacTip. The
primary sensing unit comprises a sharp white tip surrounded
by four black cover tips that when subjected to an external force
emphasizes the applied direction and contact location, for high-
resolution imaging by an internal camera. The sensor design
means that we can utilize the tactile images directly as the model
input (not requiring marker detection) for computationally
efficient reconstruction of 3D external forces, contact geometry,
localization and depth, by utilizing an analytic tactile model
based on dynamic friction and internal pressure. Indentation
and press-and-shear tests confirmed this mechanism, with sub-
mm localization and indentation errors, and normal and shear
force time series that match measured quantities. The sensor
design opens up a new way to instantiate biomimicry in optical
tactile sensors that utilizes mechanical processing in the skin.

I. INTRODUCTION

Human dexterity begins with our highly sensitive fingers.
Of all body parts, our fingertips have the most nerves for
touch [1], allowing us to feel the shape and dynamics of
objects with even a light touch. Scientists studying touch in
neuroscience consider the sensory mechanoreceptors near the
skin’s dermal-epidermal boundary [2]. Biological tactile sen-
sitivity depends on the morphology of this boundary, where
a mesh of dermal papillaec and epidermal ridges amplifies
small contacts via a micro-levering effect [3]. The mechanics
of these skin structures transduces contact indentation and
shear across a wide range of exerted frequencies

Many artificial tactile sensors have biomimetic designs
based on human skin. For example, a biomimetic soft ca-
pacitive e-skin can measure normal and tangential forces
because it has a 3D structure that mimics the interlocked
dermis-epidermis boundary in human skin [4]. The TacTip,
created at the Bristol Robotics Laboratory, is also based on
the morphology of this boundary, but instead mimics the
levering motion of the intermediate ridges, captured from
the transverse motion of markers on the tips [5]-[7]. This
transverse motion of the markers forms a representation of
the skin’s indentation and shear, and has been found to
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Fig. 1. Activation of the BioTacTip’s primary sensing unit in response to
strain: (left) at rest; (middle) under normal indentation; (right) under shear.

resemble the neural activity recorded from mechanoreceptor
afferents in classic studies of skin neurophysiology [8].

Another important feature of cutaneous human touch is
its high spatial resolution, with 100s of mechanoreceptors
per fingertip. This aspect is captured in the increasing use of
optical tactile sensors having internal cameras, such as the
GelSight [9], DIGIT [10] and the TacTip soft biomimetic
tactile sensor described above. High-resolution depth infor-
mation can be imaged from light reflected from an internal
membrane [9] or with a depth camera [11]. However, skin
shear is usually sensed by the transverse motion of markers,
which are added to the skin underside for the GelSight [12].
Markers are fundamental to the TacTip operation and are
used to sense contact depth, shear and force [7]. However,
these quantities cannot be modelled easily from the marker
motion, so most models use ‘black-box’ deep learning mod-
els trained with large data sets. These have many limitations,
e.g. computational resources, lengthy data collection and
recalibration issues if the sensor skin is changed or damaged.

In this study, we present a novel soft biomimetic tactile
sensor capable of computationally efficient reconstruction of
3D forces alongside contact localization and depth, owing
to its innovative sensing mechanism derived from a new
biomimetic fabrication of the morphology of the epidermal-
dermal boundary (Fig. 1). The primary sensing unit com-
prises a sharp tip surrounded by four cover tips that conceal
the tip’s point when at rest. When subjected to an external
force, the sharp tip’s movement relative to the flat cover
tips is intentionally emphasized in the applied direction, for
imaging by the internal camera and post-processing of the
contact properties. Our main contributions are:

(1) A novel biomimetic tactile transduction mechanism:
the primary sensing unit of our proposed soft biomimetic
optical tactile sensor is based on the peg-like structure of the
dermal-epidermal boundary, retaining the micro-levering ef-
fect while also informing directly about indentation (Fig. 1).

(2) An interpretable, analytic tactile model based on
the sensor’s working principle allows efficient calculation
of contact shape, centre of contact localization, indentation
depth, along with normal and shear forces. Each BioTacTip is
usable with this model after only a simple calibration without
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(A) BioTacTip’s outer appearance. (B) Cross-section view of BioTacTip. (C) Exploded view of its components. (D) The tips and cover tips in a

rest state (top) and an image of this setup as captured by the camera (bottom). (E) Motion of the tips and cover tips under external pressure.

the need for extensive data acquisition and training.

(3) Our tactile model leverages processed raw images as
inputs, eschewing the need for marker detection methods to
enhance computational efficiency.

II. RELATED WORK

Many artificial tactile sensors have prioritized temporal
resolution over enhancing spatial resolution. For example,
piezoresistive and capacitive tactile sensors [16]-[18] excel at
measuring high-frequency kHz pressure distributions during
contact, but face challenges in measuring shear and give
a low-resolution spatial output. Further, piezoresistive and
capacitive tactile sensors do not have the spatial recognition
capabilities compared to vision-based tactile sensors (VBTS)
[9], [10], [13], [19], such as recognizing the texture features
of an object’ surface (see comparison in Table I).

Advancements in miniature camera technology and the
use of soft material manufacturing have given prominence
to VBTS. These sensors can have high spatial resolution
due to their use of MegaPixel arrays, while their temporal
resolution is typically 30-120 frames per second (although
faster cameras or event-based technology [20] are being
explored). Familiar examples include MIT’s GelSight [9],
Meta’s DIGIT [10] and BRL’s TacTip [6], [7], [21].

The GelSight and DIGIT determine contact conditions
revealed from the shading due to three RGB light sources
reflected from an outer membrane. For a thin membrane over

TABLE I
TACTILE SENSOR COMPARISON

Common
Technologies

Localization  Indentation  Normal Force  Shear Force Texture Setup

Sensor MAE (mm)  MAE (mm) MAE (N) MAE (N)  Recognition  Difficulty

Interpretable

BioTacTip* <0.50 £0.50 <020 0.20 Medium Low
Digit* [10] Neural network <019 <022 None None High MZ““E‘I“‘"
9DTact* [13] Neural network £0.05 £0.05 <031 £0.31 “’[f“l’;:“ High
Neural network/
TacTip* [14] blob detection <016 <0.20 None None Low Medium
+ mapping model
GelSlim2.0% [15]  Finite element None None <032 <022 High High

method
+ mapping model

a stiff elastomer, these sensors can give highly-detailed mea-
surements of indentation, but are insensitive to shear. There-
fore, to improve shear and contact force estimation, they
incorporate thin marker arrays within the sensor layer [12].

In contrast, TacTip can simultaneously assess the external
shape and estimate contact force using an array of markers
on the tips of pin-like papillae beneath its sensing surface
[6], [7]. Tips perpendicular to the sensing surface move
as the surface deforms, which an internal camera captures
over time. Typically, a trained neural network estimates the
external contact conditions from the movement of the tip
array [22]. This estimation is also utilized for pose and shear
estimation, enabling tactile servoing [23].

For soft optical tactile sensors, the absence of a com-
prehensive and interpretable dynamic model to predict the
contact properties and force has encouraged the use of deep
neural networks trained on very large datasets of tactile
images (e.g. [13], [14]). This has led to much progress
in tactile perception and control, but also has costs in
computational efficiency and the extensive data gathering
for model training. We have included an assessment of
setup difficulty, which encompasses both the time investment
and the challenges involved in data collection or calibration
(comparison in Table I). Sim-to-real is one way to limit
data collection in the real world, for example using an
Elastomer Deformation Simulator such as Tacchi [24] to
generate data to pretrain a model; however, so far there
remains a Sim2Real gap that is addressed by gathering real
data for further model training. In particular, due to these
sensors’ manufacturing complexity, such as using casting and
demolding to produce the skin of the DIGIT and injecting gel
to fill the skin of the TacTip, these models may not generalize
well across fabricated sensors. Thus, there is a need for a
high-resolution soft tactile sensor that can efficiently acquire
contact information such as location, indentation, normal
force and shear force directly from the tactile image.
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