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Abstract—When the robot tactile-motor policy trained in the
simulator is transferred to the real world, model’s performance
has a great potential for degradation due to the domain gap
between simulated and real tactile images. Currently pixel-level
domain adaptation methods for tactile images, extensions of the
GAN-based image transfer algorithms, provide relatively general
solutions. However, these GAN-based methods are characterized
by high network structure complexity, unstable and costly train-
ing process because of the adversarial training relationship be-
tween the generator and discriminator. On the contrary, feature-
level domain adaptation designed based on specific regression
tasks can obtain more stable results with less cost. In this paper,
we propose a feature-level unsupervised sim2real framework for
tactile images, called STR-Net, to narrow the domain gap for
feature-level tactile perception tasks.

I. INTRODUCTION

TACTILE sensing is essential for tactile-based robotic
manipulation tasks [1]. Such tactile sensing is vital in

situations of poor illumination or operating small objects
with heavy occlusions by gripper. For those learning-based
tactile-motor manipulation skills, most of them are trained in
simulator in order to avoid great damage for robots. However,
due to the significant reality gap between simulated and real
tactile images, the generalization performance of the model
trained in a simulator will be greatly reduced when it is
deployed in a real-world environment. Therefore, the core of
sim2real for tactile-motor policy is decreasing the discrepancy
between simulated and real tactile images.

Many recently proposed works have demonstrated the ef-
fectiveness of pixel-level domain adaptation, a mainstream
approach, for tactile images with GAN-based methods [2],
[3]. However, while these pixel-level transfer represent a
versatile approach suitable for tactile sensing, it necessitates
the design of additional task-specific networks for different
tactile image tasks, like classification, regression, or feature ex-
traction. Specifically, subsequent classification/regression net-
works must use the output of the pixel-level transfer network
as input, which can lead to error accumulation and thus de-
grade classification or regression performance. Also, instead of
only collecting RGB images, mask images are needed as well
[2], [3]. Furthermore, Generative Adversarial Networks(GAN)
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Fig. 1. Real Gelsight tactile image samples (top) and simulated tactile image
samples by FOTS (bottom).

inherently exhibit training instability, contributing to increased
structural complexity and training costs.

This study explores the possibility of achieving a faster
and more robust tactile image sim2real transfer directly at
the feature level for regression tasks. Our defined task is to
estimate the pose of cylindrical objects in hand inspired by [1].
The proposed network, STR-Net(Siamese Tactile Regression
Network), is trained using unpaired tactile images collected
in simulator and reality. The simulated images are automated
labeled by simulator while the real images are without any
labels.

II. FOTS SIMULATOR FOR TACTILE IMAGE SIMULATION

In this paper, we use our proposed FOTS (Fast Optical
Tactile Simulator) to generate simulated tactile images. Specif-
ically, we present a more robust method that utilizes a multi-
layer perceptron to simulate the optical system of sensors by
mapping contact gradients to illumination intensities. Corre-
sponding planar shadows are then generated for each light
source. Image samples are shown in Fig.1

With regard to lighting simulation, our method uses real-
world data to simulate the intrinsic noise of the real sen-
sors, without requiring any prior knowledge of the sensors’
hardware layout. It also allows for greater generalization and
robustness in the simulation, with an additional advantage
of improved learning performance through the use of batch
normalization. For shadow simulation, we use the planar
hard shadow generation method [4] to simulate the shadow
from each light source separately, which eliminates platform
dependencies and can be easily implemented on other sensors.

Experimental results demonstrate that FOTS outperforms
other methods in terms of image generation quality and
rendering speed, achieving 28.6 fps for optical simulation on
an Intel Core i7-9700k 8-Core Processor CPU.

mailto: kqian@seu.edu.cn.
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Fig. 2. An overview of STR-Net during training and the task scenario.

III. UNSUPERVISED FEATURE-LEVEL DOMAIN
ADAPTATION METHOD

Network architecture during training phase. In the train-
ing phase, STR-Net consists of three main parts: a Siamese
Encoder, a Feature Stylization Mechanism (FSM) and a Style
Consistency Learning Module(SCLM). An overview of STR-
Net is shown in Fig.2. The manipulation task scenario, pose
regression of in-hand cylindrical objects, is also displayed in
the lower right corner.

When training, the siamese network randomly takes one
batch of simulated tactile images as input while the third
encoder takes one batch of unpaired real tactile images as
input. FSM is inspired by [5], which is embedded in the second
encoder to realize feature-level domain adaptation. Finally, the
siamese encoders will output the simulated features and real-
stylized simulated features, respectively. Inspired by [6], we
design a contrastive learning loss LSCLM in image-level for
visual representation learning without negative tactile sample
pairs behind the encoder. In order to avoid the degenerated so-
lution and yielding a collapsed representation, two approaches
can be implemented. Firstly, an asymmetric architecture for the
siamese encoder is established, where one representation needs
to pass through an additional non-linear projector, resulting in
a different feature embedding. Besides, similar to [6], we adopt
the stop-gradient operation on them.

Feeding the finally obtained simulated features into regres-
sor, we can get the corresponding predicted results. MSE loss
LREG is performed for supervised loss in simulation domain.

Meanwhile, although FSM helps alleviating the style differ-
ences between the simulated and real domain, it may cause a
loss of semantic content. Hence, we embed task-relevant loss
LTR to capture pose features related to real domain. To be
specific, obtained real-stylized simulated features are also sent
into the regressor. Finally, the total loss function of STR-Net
consists of three parts, LSCLM , LREG and LTR.

Network architecture during testing phase. Once the
network is trained, we apply the STR-Net to unseen real tactile
images. During testing, only a single encoder is included. The

siamese encoder becomes a single branch and all the FSM
in CNN are deactivated, replaced by the original BN layer.
Finally, the features from the encoder are fed into the regressor
to get the predicted in-hand pose.

IV. RESULTS AND CONCLUSION

Following previous work [7], Mean Absolute Error (MAE)
and Mean Square Error (MSE), which are widely applied in
regression tasks, are used as evaluation metrics to validate the
proposed method. In this paper, their unit is radians.

RSD [7] and CycleGAN [8] are outstanding unsupervised
domain adaptation methods in feature-level and pixel-level,
respectively. We quantitatively analyzed and compared STR-
Net with above algorithms in sim2real direction on our dataset.
The results are as follows. RSD exhibits an MAE of 0.353
and an MSE of 0.413. For CycleGAN, employing a model
trained on the simulated dataset to evaluate the transferred
unseen real images results in an MAE of 0.353 and an MSE
of 0.224. Compared with these domain adaptation methods,
STR-Net presents a better performance, demonstrating higher
accuracy and reliability with an MAE of 0.160 and an MSE
of 0.088. Furthermore, while CycleGAN’s training duration
extends beyond 8 hours, STR-Net requires less than 3 hours,
highlighting its efficiency. In addition, the images in simulator
and reality are collected by different grasping forces, which
means the size of the foreground area is not constant. Thus our
method is applicable to grasping columnar object in different
sizes with different forces.

The results demonstrate that our proposed method has effec-
tiveness for cross-domain tactile images regression task. STR-
Net brings a new idea for narrowing the domain gap between
optical tactile images in real and simulated environments.
Compared with pixel-level domain adaptation methods, our
approach needs less training cost and has better task-specific
performance. In the future, we will try to combine this method
with robot skills based on reinforcement learning algorithms
to achieve sim2real transfer of tactile-motor policies.
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