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Abstract— Humans can continuously perceive and react to
an object slipping from grasp using touch. The detection of
slippage is independent of the object properties and occurs in
hundreds of milliseconds. To achieve this performance it has
been postulated that the nervous system seeks stereotypical pat-
terns of deformation to rapidly detect object slippage regardless
of the friction coefficient. In comparison, robotic tactile sensors
currently offer limited capability in estimating slip sensation, as
they are often unable to detect slip precursors and only respond
once a full slip occurs. Here, we show a method to estimate how
far away from full slip the contact is by projecting tactile data
on a low-dimensional space. This space is built by extracting
the principal components of the pressure distributions found
using the Cattaneo-Mindlin model. This approach, inspired by
human behavior, can quickly and robustly estimate the degree
of slip of an object grabbed by a robotic gripper.

I. INTRODUCTION

The gradual slippage of an object, also called as incipient
slip is a central information provided by the sense of touch to
enable safe and delicate grasping. By detecting incipient slip,
controllers can prevent sudden object fall while minimizing
the grasping force, which is crucial to handle fragile objects
[1], [2].

Remarkably, humans can detect slip from the deformation
of the skin detected from the thousands of mechanorecep-
tors regardless of the specific properties of the object in
hand. It is unclear however, how humans can process such
a vast amount of sensory afferent so rapidly. A possible
explanation lies in the Efficient Coding Hypothesis, presented
for the first time by Horace Barlow in [3]. According to
this hypothesis, the transmission of sensations from sensory
organs (e.g. fingertip) to the nervous system uses a compact
representation of stimuli to compress the information and
reduce redundancy. In the specific case of human touch,
Willemet et al. suggested that only six fingertip strain pat-
terns were enough to perceive incipient slip independently
of the frictional conditions [4].

In comparison, the tactile slip perception implemented in
robotic grasping is by far more limited [5]. In many cases,
the gradual nature of the phenomenon is ignored and only
gross slip is detected [6], [7], [8]. Even when a degree of
slip is estimated, it depends on the specific material or object
properties, without a clear method to generalize [9], [10].
The limits of these methods apply even for high-resolution
tactile sensors, which suggests that a proper processing of
tactile data is as important as hardware advancements when
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Fig. 1. Bioinspired slip processing schematic. Partially adapted from [4].

it comes to interpreting physical phenomena such as the
incipient slip.

In this work, we discuss a processing framework based on
contact mechanics to extract the degree of object slippage
from tactile data (Fig. 1). The dimensionality of the distri-
bution of normal pressure p(r) and tangential traction q(r)
can be reduced to few main components that highly correlate
with the evolution of slip. By assessing the activation of these
components, an off-the-shelf classifier can robustly estimate
the degree of slippage under variable contact conditions.

II. METHODOLOGY

A. Analytical contact model

We developed an analytical model of sliding contact based
on Hertz and Cattaneo-Mindlin theories [11] to simulate
the tactile interaction between an hemispheric soft sensor
(with radius R1 = 10mm, Young and Poisson ratio being
E1 = 0.5 MPa and ν1 =0.45 respectively) pressed on a flat or
curved surface (i.e. sphere vs sphere). We were interested in
the distribution of normal pressure p and tangential traction
q on the contact area a. In the simulated cases, a was
always circular while p(r) and q(r) are axisymmetric. We
defined α(r) = arctan q(r)

p(r) as the angle formed between the
localized normal and tangential forces, implying that in the
sliding portion of the contact area µ is equal to tan (α(r)).

As a measure of the degree of incipient slip, we use the
Safety Margin (Γ), defined as Γ = Q∗−Q

Q∗ , where Q∗ is the
critical tangential force when slippage occurs and Q is the
current one. Γ ranges from 0 (gross slippage reached) to 1
(no tangential forces are applied).

B. Data generation

Dataset consisting of about 16000 samples from variable
contact conditions were generated for p(r), q(r) and α(r).



Combinations of object stiffness (i.e. E2,ν2), curvature R2,
friction coefficient µ, and normal force P were extracted
randomly from predefined intervals defined as follows:

• P ranging from 1 to 5 N. Forces above 5 N were
avoided to prevent the contact area from being too big.

• µ ranging from 0.1 to 0.9.
• R2 ranging from 10 to 50 mm or flat.
• E2,ν2 defined the material stiffness. Half of the simu-

lations were performed considering stiff surfaces, with
E2 and ν2 ranging from 100 to 300 GPa and 0.2 to 0.3
respectively. The other half of the simulations featured
softer materials similar to the one assumed for the
sensor, with E2 and ν2 ranging from 0.1 to 10 MPa
and 0.35 to 0.45 respectively.

The tangential force Q was increased until full slippage
was reached, resulting in Γ ranging from 1 to 0 for each
different combination of parameters. The acquired data were
organized in matrix form, resulting in Xp,Xq and Xα,
consisting of n =10000 rows (i.e. flattened 100x100 2D
contact data grid) and m =16000 columns (i.e. number of
samples). Noise drawn from a uniform distribution within
the range ±maxvalue of each contact data distribution was
added. From now, we will consider only Xα, as the results
and considerations for Xq are totally similar.

C. Data analysis

We found a low-dimensional structure of Γ using the
Singular Value Decomposition (SVD) on Xα. A schematic
representation of the process can be seen in Fig.2.

Fig. 2. Schematic representation of the SVD applied to Xα.

By keeping only a limited amount of r columns of U , Σ
and V T , we can achieve a rank-r approximation of Xα. We
are interested in the columns of Ur, containing the dominant
Xα singular values uk, hierarchically arranged.

III. RESULTS AND DISCUSSION

A. Low-Dimensional structure of slip

Despite the contact variability injected in Xα, just 8 singu-
lar values (i.e. r=8) are sufficient to explain more than 95%
of the variance in the data. Particularly, the first three bases
u1, u2, and u3 explain 72%, 11%, and 5% of the variance
respectively, and together they explain approximately 88%
of the variance of Xα.

To evaluate if these 8 singular values provide a compact
representation of Γ, every simulation of Xα was projected
on these eight principal values, to compute the activation
of these main bases. We visualize the dataset by showing
the projections of all the columns in Xα on the first three

principal components, resulting in the scatter plot shown in
Fig.3. The safety margin Γ is encoded in the color.

Fig. 3. Projection of Xα columns on u1, u2 and u3 (i.e. uT
1 Xα, uT

2 Xα

and uT
3 Xα, respectively) . The slip degree Γ clusters regularly on this low-

dimensional space.

The distribution of Γ for all contact conditions clusters
regularly in this low-dimensional 3D space, with the projec-
tions gradually approaching the axis origin as Γ → 1.

B. Slip degree classification

To evaluate the advantages of a low-dimensional repre-
sentation of the Γ, we used a simple k-nearest neighbors
(KNN) classifier with k = 5. Xα was split considering 70%
of the data for training, while the remaining 30% was used
for testing. We wanted to predict five classes of Γ, ranging
from 1-0.8, 0.8-0.6, 0.6-0.4, 0.4-0.2, 0.2-0. We compared
on one side the effect of taking the whole dataset columns
as a classifier input or on the other side, only considering
the projection of such columns on an increasing number of
bases. Specifically, we trained a KNN considering the full
columns of Xα (i.e. 10000 input size, from the 100x100
original grid) and we consider the projections of each Xα

column on an increasing number of uk, up to 100. In Fig.4
are shown the test accuracy results for these two cases in red
and blue respectively, with emphasis on the first 8 uk.

Fig. 4. KNN test accuracy: entire Xα columns (red) vs projection of Xα

columns on an increasing number of bases (blue).

These results show that the first three singular values are
sufficient to achieve an overall accuracy of 81%, which is



close to the one using the full Xα columns, i.e. 83%. Instead,
the accuracy obtained by recruiting eight singular values
reaches around 91%. From the 9th base on, the increase in
accuracy is negligible.

IV. CONCLUSIONS AND FURTHER WORK

These results suggest that a compact and physics-based
representation of Γ can be achieved, hence creating a more
robust estimation of slip for objects with unknown properties
or in presence of measurement noise, while promoting com-
putational efficiency. This approach takes inspiration from
the human-like processing of slip, where the assessment
of the degree of slip is likely based on the recognition of
few deformation patterns. Indeed, these preliminary results
are well aligned with the efficient coding hypothesis and
the results presented by Willemet et al. [4] in the human
case. Future work will cover the experimental validation of
the approach. These results have repercussions for reactive
grippers that can modulate their grip force in response to
frictional conditions.
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