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Sim-to-Real Deep Reinforcement Learning
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I. INTRODUCTION

B IMANUAL robotic manipulation is a useful and natural
way of manipulating large, unwieldy or coupled objects

due to the better manoeuvrability, flexibility and a larger
workspace compared to single-arm settings [1]. Furthermore,
the higher dimensionality of the dual-arm state-action space
can enable more realistic tasks for real-world applications,
particularly when tactile sensing is leveraged to complement
vision [2]. However, there are challenges in applying bimanual
touch: (1) dual-arm systems often introduce more complexity
in terms of system integration and controller design [3], and
(2) the high cost of existing dual-arm systems makes them
less accessible to the research community. Moreover, while
vision is commonly used as the primary sensing modality
for bimanual manipulation, tactile sensing complements those
aspects where vision is limited, such as enabling physically
interactive control with soft contacts and ensuring robustness
in scenarios where visual occlusion may occur [4].

The main contributions of this work are as follows:
1) We adapt and extend the Tactile Gym 2.0 [5] to a low-
cost dual-arm tactile robot setting with three new contact-rich
bimanual tasks: bi-pushing, bi-reorienting, and bi-gathering.
2) We introduce appropriate reward functions for these tasks
and show that deep RL reaches satisfactory performance
using only proprioceptive and tactile feedback. To improve
the robustness of the policies for real-world applications, we
improve the sim-to-real transfer for bi-reorienting and propose
a novel goal-update mechanism (GUM) for bi-gathering.
3) We demonstrate that the bimanual policies learned in sim-
ulation can be transferred well to the physical dual-arm robot.
We further demonstrate the generalizability and robustness of
the learned policies by testing the system on unseen objects.
Videos are available at https://sites.google.com/view/bi-touch/

II. METHODS

A. Accessible Dual-arm Tactile Robotic System

1) Desktop Tactile Dual-arm Platform: To facilitate afford-
able automation and lower the entry barrier, we develop a
low-cost dual-arm tactile robotic system while keeping high
accuracy, which is comprised of two industry-capable desktop
robotic arms (Dobot MG400) with vision-based tactile sensors
mounted at the wrists as end-effectors (Fig. 1c). The proposed
platform is developed with the Tactile Gym 2.0 [5] simulation
(Fig. 1a) for deep RL-based policy training (see Sec. II-C).
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B. Sim-to-Real Deep RL Framework for Bimanual Tactile
Robotic Manipulation

To apply the deep RL policies learned in simulation to the
physical dual-arm tactile robotic system, we take a sim-to-
real approach [6] consisting of three parts (shown in Fig. 1):
1) An online agent training in simulation (Fig. 1a), where
deep RL policies are learned in the Tactile Gym for three
bimanual tactile robotic tasks (bi-pushing, bi-reorienting and
bi-gathering) with observations comprising simulated tactile
images and proprioceptive feedback. 2) A real-to-sim domain
adaption process where a translation model is learned to
transfer real to simulated tactile images. 3) A sim-to-real
application with networks trained in the previous two parts,
for transferring deep RL policies to the physical system.

C. Bimanual Tactile Manipulation Tasks

In this study, we propose three bimanual tactile control tasks
to benchmark the aforementioned dual-arm tactile system: bi-
pushing, bi-gathering and bi-reorienting.

1) Bi-Pushing: An advantage of dual-arm robots over
single-arm robots is that they can move relatively large and
unwieldy objects. The goal of this bi-pushing task is to move a
large object on a planar surface collaboratively with two robot
arms with end-effectors to achieve a sequence of goals along
a given trajectory.

2) Bi-Reorienting: Reorienting an object with two arms is
necessary when the object size exceeds the limit of what can
be held by a gripper or a robot hand. The goal of this bi-
reorienting task is for two robotic arms to reorient an object
located at the workspace centre to a given target angle while
keeping the object centre fixed in place. The dual-arm robot
should reorient the object with gentle contact while keeping
the end-effectors (TacTips) normal to the contact surface.

3) Bi-Gathering: Gathering objects together is a common
behaviour in our daily life, from tidying our desks to moving
and sorting packages in warehouses. The goal of this bi-
gathering task is for the dual-arm robot to gather two objects
together by pushing them towards each other on a planar
surface. Thus, each end-effector of the dual-arm robot has
to push an object towards a dynamically changing goal. To
further explore the limit of the dual-arm tactile robot, we
also introduce random perturbations to the objects during the
gathering. Specifically, a random force is applied to an object’s
centre of mass at a random time step when training.
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Figure 1. Overview of the proposed dual-arm tactile robotic system (Bi-Touch) with sim-to-real deep RL. a) Deep RL is applied to learn policies for three
simulated bimanual tactile manipulation tasks (red arrows show desired displacements) using Tactile Gym. b) Real-to-sim tactile image generator learnt for the
surface feature. c) The real-world evaluation feeds real tactile images through the generator into the RL policy concatenated with proprioceptive information.

III. EXPERIMENTS AND RESULTS

A. Evaluations on the Bi-Touch in Simulation and Reality

An on-policy model-free deep-RL algorithm called Prox-
imal Policy Optimization [7] is used to train policies in
simulation for all three proposed bmanual tactile robotic tasks.

We obtained successfully trained policies in simulation for
all three tasks. The bi-pushing is the easiest task to learn with
a smooth learning curve and convergence at an early time step.
The other two tasks have subtleties in learning that we describe
below.

1) Bi-Pushing: The accuracy from 20 simulated tests of
random trajectories is 12.3 ± 4.8 mm. And the accuracy from
20 real-world tests of random trajectories for the tripod box,
the shuttle tube, and the loudspeaker are 14.2 ± 6.4 mm, 16.6
± 7.7 mm, and 17.4 ± 8.1 mm respectively, compared to an
overall distance travelled of 300-420 mm. The performances
on all objects are similar despite notable differences in their
contact shapes (e.g. flat, curved, and sloping surface), showing
the generalization ability of the learned policy.

2) Bi-Reorienting: The average translation and orienta-
tion errors from 10 simulated tests are 10.2 ± 4.8 mm and
3.4± 1.8◦ respectively. In reality, the robot achieved this task
with most of the selected objects with translation error from
12.5±5.3 mm to 19.5±7.0 mm, and orientation error from
7.5±3.9◦ to 13.4±6.5◦, except the triangular prism where
there was a problem with the sharp edge.

3) Bi-Gathering: Upon testing the policy trained under
perturbations with the goal-update mechanism, the success
rates are 100% with different perturbation times in each of
5 simulated tests. In reality, the robot successfully completed
the bi-gathering task without perturbation in all sets of 10 trials
for each object. Regarding the effect of perturbations, the robot
completes the task at 100% success rate when the perturbation
is applied twice or fewer times. The success rate decreases
when the number of applied perturbations is increased for all
pairs of objects, decreasing most for the irregular items (mug,
triangular prism, foam toy and spam can).

IV. DISCUSSION AND FUTURE WORK

We developed a low-cost dual-arm tactile robot system
called Bi-Touch for sim-to-real deep reinforcement learning
based on Tactile Gym 2.0 [5]. The hardware includes two
industry-capable desktop robot arms (Dobot MG400), each
equipped with a low-cost high-resolution optical tactile sensor
(TacTip) as end-effectors. We also designed a workspace
configuration suited for three proposed bimanual tasks tailored
towards tactile feedback and integrated into the Tactile Gym
simulation methods and environments.

The performance of our low-cost sim-to-real deep RL dual-
arm tactile robot system was evaluated in these three bimanual
tasks in the real world. We introduced appropriate reward
functions for these tasks in simulation, then investigated how
these policies apply to the real world. The experimental results
show that the developed dual-arm tactile system is effective
for all tasks on real objects unseen in the simulation learning.
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