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Abstract—Vision-based tactile sensors have recently become
popular due to their combination of low cost, high spatial reso-
lution, and ease of integration using widely available miniature
cameras. The associated field of view and focal length, however,
are difficult to package in a human-sized finger. This work
uses optical fiber bundles to achieve a form factor that, at
15 mm diameter, is smaller than an average human fingertip.
The electronics and camera are also located remotely, further
reducing package size. The sensor achieves a spatial resolution
of 0.22 mm and a minimum force resolution of 5 mN for normal
and shear contact forces. With these attributes, the DIGIT Pinki
sensor is suitable for applications such as robotic and teleoperated
digital palpation. Its utility is demonstrated for a prostate cancer
palpation use, achieving clinically relevant discrimination of
stiffness on silicone phantom tissue.

Index Terms—force and tactile sensing, fiber optics, tissue
palpation, robotic palpation, medical robotics

I. INTRODUCTION

For robot hands to substitute human hands in tasks requir-
ing tactile acuity, they should match the force and spatial

resolution of human fingertips while also having comparable
stiffness and dimensions. Towards this goal, we present an
approach for miniaturizing vision-based tactile sensors by
using fiber bundles as optical conduits, demonstrating their
use for manipulation tasks in constrained settings that cannot
be done with larger fingers. An exemplar task is palpation
through a natural orifice, as in the case of the digital rectal
exam (DRE) for early prostate cancer screening [1]–[3].

II. DESIGN AND FABRICATION

As in early fiber-based imaging research [4], fiber bundles
are used as conduits for illumination and imaging, decoupling
the sensing element from supporting circuitry. Because the
circuitry and processing are located remotely, the sensor size is
no longer constrained by the packaging of an internal camera,
lens, and lighting as in other such popular sensors [5]–[7]. In-
stead, the primary constraint is the bundle size, as determined
by the desired resolution and lighting requirements.

Fig. 1: DIGIT Pinki consists of: a distal sensing element, a proximal imaging system, and a proximal illumination system,
connected with optical fiber bundles. The distal end contains (a) an elastomer gel mounted in (b) a 3D-printed housing. Both
the (c) imaging and (d) illumination bundles mate to the gel. At the proximal end, the illumination bundles mate to the (e)
collimator coupled to (f) LEDs. When making contact with an object (e.g. a woman’s index finger), the gel is first imaged with
(g) a distal hyperfisheye lens, conveyed through the imaging fiber bundle, then magnified by (h) optical lenses and captured
by the (i) camera. The proximal imaging and illumination may be co-located or separate.



TABLE I: Comparison between DIGIT and DIGIT Pinki

Sensor Sensing
Area
(mm2)

Sample
Rate
(Hz)

Spatial
Reso-
lution
(mm)

Normal
Force
Reso-
lution
(N)

Shear
Force
Reso-
lution
(N)

DIGIT 304 60 0.150 0.006 0.012
DIGIT Pinki 1,404* 10** 0.22 0.005 0.005
* This number is from a proposed hyperfisheye lens design.
** Sampling rate at highest resolution of 4656×3496 pixels. A 30Hz

sampling rate is available at lower resolutions (1920×1080 pixels).

We guide the design with three requirements:
• small elastomer sensing element with diameter and stiff-

ness comparable to a human fingertip,
• high spatial resolution for computer vision,
• high field of view across the curved fingertip area.

Based on these requirements, we construct a proof-of-
concept prototype that is 15mm in diameter, as shown
in Fig. 1, achieving approximately the size of an adult
female index fingertip or a fifth percentile male finger-
tip [8]. A detailed manufacturing guide can be found at
https://github.com/facebookresearch/digit-design.

To assemble the sensor, we bond a hemispherical gel to
a thin 3D-printed thread using Smooth-On Sil-Poxy Silicone
Adhesive, and then screw the gel onto a 3D-printed housing.
The housing is customizable; we show a housing compatible
with the Allegro Hand. The “screw-on” gel allows easy
swapping of tips, a useful feature for medical applications
enabled by the fiber-based design.

We use a 7,400 core coherent fiber bundle as the imag-
ing conduit, and 48-core incoherent fiber bundles as the
illumination conduits. Illumination fibers were adhered with
cyanoacrylate to a 3D-printed collimator directly coupled to a
12-LED Adafruit Neopixel ring mounted in an LED holder. To
image the proximal end face of the imaging fiber bundle, we
aligned an adjustable diopter, a 10x Plan microscope objective,
and a microscope eyepiece to a 16MP IMX298 USB camera
connected to a computer.

III. SENSOR CHARACTERIZATION

We assess force estimation by evaluating DIGIT Pinki’s
ability to measure applied normal and shear forces at a contact.
Because we are motivated by a tissue palpation use case, or
other similar fine manipulation, we are primarily interested in
the ability to measure light forces up to 1N.

To collect training data, we mounted DIGIT Pinki on a
Mecha robotic arm and installed a metal indenter probe on
a force sensor on top of a linear stage. The ground truth
normal and shear forces are synchronously collected with the
images from the DIGIT Pinki for light normal forces up to 1N
and shear forces up to 100mN, resulting in 100,000 image-
force pairs with three different indentor types (4mm, 12mm
diameter, and flat) for training a ResNet-18 model with mean
square error as the training loss.

45 42 35 25 16 11 5 1.5 0.5
Predicted (Shore A)

45
42

35
25

16
11

5
1.

5
0.

5
G

ro
un

d 
T

ru
th

 (
S

ho
re

 A
)

135 0 0 0 0 0 0 0 0

0 106 0 1 0 2 1 0 0

0 0 103 0 3 0 0 0 0

0 0 0 109 0 2 0 0 0

0 0 0 0 100 0 8 0 0

0 0 0 3 0 107 0 0 0

0 0 0 0 0 0 108 0 0

0 0 0 0 0 0 0 119 0

0 0 0 0 0 0 0 2 110

0%

20%

40%

60%

80%

100%

Fig. 2: Classifier performance on silicone hardness class
prediction task. Prediction results on the silicone hardness
samples show that the learned model is capable of predicting
the hardness of the samples being touched with high accuracy.

Normal and shear force resolution are reported in Table I.
DIGIT Pinki is able to accurately estimate light normal and
shear forces over the elastomer tip. There is no significant
difference in performance between the different indenter probe
sizes, suggesting that DIGIT Pinki would perform well over a
variety of contact sizes.

IV. PALPATION EXPERIMENTAL RESULTS

To be useful for medical palpation, we desire the ability to
classify firmness over a range of values that simulate healthy
and unhealthy tissue. We prepared a custom dataset associating
stiffness (defined as hardness values on the Shore durometer
scale for elastomers) to silicone samples of different relevant
geometries. Using this dataset, we trained a classification
model that classifies the hardness values based on a sequence
of 16 image frames, in order to show DIGIT Pinki’s potential
for palpation use cases.

We fine-tuned transformer-based video masked autoen-
coders (VideoMAE) [9]. The model takes as input the 16
frames sequences, and outputs a scalar that represents the
hardness class. Results, plotted in the full confusion matrix
(Fig. 2), show the model reaches 97.8% accuracy over 9
hardness classes. Based on these results, we see the trained
model performs well in classifying elastomer hardness values
that correspond to the range from healthy to unhealthy tissue.
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