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Abstract— In this work, we introduce AllSight, a novel optical
tactile sensor with a round 3D structure designed for robotic
in-hand manipulation. We highlight its primarily 3D-printed
construction which offers affordability, modularity, durability
and a human thumb-sized design with a large contact surface.
With the design, the ability to learn and estimate a full contact
state, i.e., contact position, forces and torsion, is shown through
experimental benchmarks. Next, to tackle the reality gap in
simulators for high-resolution tactile sensors like AllSight,
we propose SightGAN, a bi-directional Generative Adversarial
Network that refines the sim-to-real transition, particularly
for 3D round sensors, and facilitates the training of zero-shot
models for newly fabricated sensors. This approach not only
advances the potential for dexterous robotic manipulation but
also showcases the significant improvement in creating realistic
synthetic images.

I. INTRODUCTION

Tactile sensing plays a pivotal role in human perception,
making it a significant area of exploration in robotics re-
search [1]–[3]. It is essential for providing robots with the
ability to interact with the environment through precise and
dexterous actions. While various compact sensors with flat
contact surfaces have been developed [4]–[6], these often
encounter challenges in complex manipulation tasks due to
their surface geometry. Consequently, sensors with spatially
varied surface geometries were introduced [7], [8]. Yet,
these sensors struggle to deliver comprehensive and reliable
contact information. Limitations include incomplete contact
state data [9], restrictions in load sensing [1], or the need for
simple and low-cost manufacturing processes [10].

In this work, we introduce a framework for optical-based
tactile sensors which includes hardware, data-based modeling
and realistic simulator. First, we propose AllSight, a compact
and cost-effective solution for multi-fingered robotic hands
engaged in in-hand manipulation tasks. Its 3D contact surface
is shaped as a cylinder with a hemispherical end as illustrated
in Figure 1.A. Moreover, pre-trained on simulation and real
contact datasets, AllSight is capable of providing precise
full contact state information including position, normal and
tangential forces, and torsion on newly fabricated sensors.

Furthermore, the advancement in tactile sensor technology
has led to the need for complex data representations, pushing
for large-scale datasets to develop accurate models [11].
Addressing the demand for extensive data, simulations for
optical-based tactile sensors have been designed to quickly
generate vast tactile image datasets [12], [13]. Yet, bridging
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Fig. 1: Illustration of AllSight. (A) Sensor structure, (B) Three
AllSight sensors on the fingers of an adaptive hand. (C) sim2real
generator from the trained SightGAN model is used to map simu-
lated tactile images to real-like images of a 3D round tactile sensor

the gap between simulated and actual sensor data poses
challenges due to discrepancies in tactile images [14], [15].
To tackle the sim-to-real challenge we propose the Sight-
GAN model which augments CycleGAN [16] with specific
consistency losses. These losses aim at reducing background
differences and improving contact position accuracy between
simulated and real tactile images. Its bidirectional capability
ensures effective knowledge transfer across simulated and
real settings, optimizing model training despite variations in
sensor illumination and design.

II. METHODA. Design

The AllSight sensor is an optical-based tactile sensor de-
signed for comprehensive 360◦ contact sensing without any
blind spots. It features a cylindrical tube with a hemispherical
end, as illustrated in Figure 1.A. The tube consists of a three-
layered structure. At its core is a rigid, transparent shell
fabricated through SLA 3D printing. The shell is enveloped
by a layer of transparent elastomer and finally coated with
reflective silicone paint. A camera positioned inside the tube
captures the deformation of the elastomer layer when it
comes into contact with an object. Illumination inside the
shell is provided by LEDs arranged on an annular PCB,
ensuring clear and detailed image capture. The LED system
can support various lighting settings.

B. Data collection

The contact state of AllSight includes the contact position,
force and torsion. Data is collected by sampling real and
simulated labeled image datasets. In the collection of real
images, each image is labeled using a robotic arm equipped



with a Force/Torque (F/T) sensor and an indenter, allowing
for precise control over contact location and pressure. The
dataset pairs each image Ii with a state measurement, detail-
ing position calculated via the arm’s forward kinematics and
the contact load. In a simulated dataset, we employ TACTO
[12], a physics-engine simulator tailored for optical-based
tactile sensors. This process involves calibrating a virtual
AllSight sensor with reference images from actual sensors
to enhance sim-to-real transfer accuracy. Gaussian noise and
various illumination settings were added to augment the
simulated images. Each sampled simulated image is labeled
with the contact position.

C. Contact estimation model

A state estimation model infers the contact state from a
tactile image. The model is a modified ResNet-18 model,
removing the top layer and incorporating two fully-connected
layers with ReLU activations. At each iteration, both refer-
ence Iref and contact Ii images are down-sampled to resolu-
tion 224× 224 and stacked along the channel. Furthermore,
we also consider difference images in the dataset such that an
image used for training is Îi = Ii−Iref in order to make the
model agnostic to the background and focuses only on the
color gradients that occur around the deformations. Utilizing
simulated data simplifies initial training, requiring less real
data for model refinement. Hence, the contact encoder, pre-
trained on simulated dataset, is fine-tuned with real-world
data to enhance accuracy.

D. Sim-to-real with SightGAN

SightGAN extends the CycleGAN [16] framework to
address the challenges in tactile image translation between
simulated and real domains. It incorporates specialized aux-
iliary losses to enhance the translation fidelity, particularly
focusing on tactile perception nuances. The architecture em-
ploys the standard CycleGAN cycle consistency loss Lcycle
for preserving image integrity through domain translations.
To specifically support the tactile image domain, SightGAN
introduces auxiliary losses designed to ensure accurate con-
tact localization and maintain structural integrity in the tactile
images in both spatial and image domains. For the spatial
domain, we define the Spatial Contact Consistency loss
following the same structure of the consistency loss in [17]
where we replace the perception function with

Lsp(Ii, Ij)) = ∥fθ(Ii)− fθ(Ij)∥2 (1)

where fθ is the contact position estimation function. To fur-
ther augment the accuracy of contact localization in domain
transfer and enhance structural fidelity, we introduce a loss
related to the contact region. For each image I, binary image
B is defined where a mask is placed on the contact region
of the image. The contact loss between an image and its
transfer is, therefore, defined by

Lm(I,B, H) = ∥I ∗B−H(I) ∗B∥1 (2)

where H is the generator of CycleGAN. The overall loss
function for SightGAN integrates these components to op-

TABLE I: Estimation accuracy of contact positions

Origin of training data for fθ Position RMSE (mm)

D
ir

ec
t Data from 6 train sensors 2.16

6 sensors from simulation 7.48

G
en

. CycleGAN 13.30
SightGAN 3.49

timize the tactile image translation process, enabling more
accurate and reliable sim-to-real and real-to-sim translations.

III. EXPERIMENTAL RESULTS & DISCUSSION

We first evaluate the precision of state estimation using
collected data. First, the model was trained with 20,000 train
images from a real sensor with white illumination featuring
a single spherical indenter of 3 mm radius. Evaluated over
1,282 test images, the yielded mean position, force and
torsion are 0.79±0.27 mm, 0.9±0.41 N and 0.002±0.001
Nm, respectively.

Furthermore, we analyse the position estimation with
SigntGAN. Table I summarizes the Root-Mean-Square-
Errors (RMSE) for position estimation with model fθ while
trained with different origins of training data. The results
include accuracy when training directly with data from six
real sensors. Next, model fθ is trained with data generated
in the simulation without any GAN and while using the
reference images of the six training sensors. Using only
simulated data provides poor accuracy showing that the
simulation, even with real reference images, is far from
representing reality. Then, fθ with data generated by the
CycleGAN alone without additional losses is evaluated. The
error with only CycleGAN is the highest due to its inability
to focus and reconstruct the contact. Adding the two losses of
SightGAN significantly reduces the error. Next, we evaluate
the accuracy which the sim-to-real of SightGAN provides
to images generated from simulation. Figure 2 shows the
error of position estimation over the test data of the two new
sensors with regards to the number of new samples used
to fine-tune the model. With no additional data, i.e., zero-
shot transfer, the error remains low at 3.5 mm. The addition
of a small amount of new samples for fine-tuning further
improves accuracy. With 300 additional samples, the position
RMSE reaches to approximately 1 mm.

Fig. 2: Position estimation error with regards to the number of real
images from the test sensor used to fine-tune model fθ . Results with
zero new tactile images are the zero-shot transfer errors.
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