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Summary: This article introduces an optical tactile
sensor tailored for drones, which provides real-world
measures of 3D contact locations (mm) and 3D force
vectors (N) for multiple contacts interaction.

I. INTRODUCTION

Tactile sensors have found increasing uses in robotic hands,
arms and humanoids for manipulation tasks and interaction
with humans [1]–[3], as well as in terrestrial robots for loco-
motion, navigation and terrain classification [4]–[6]. Despite
these advancements, the sense of touch remains surprisingly
underutilized in drones. While current solutions often rely on
single sensors mounted on end-effectors [7]–[11], the integra-
tion of distributed tactile sensing would allow the detection
of multiple contacts around the drone’s body. This could be
highly beneficial to a variety of applications, e.g. to apply
multiple forces on surfaces (control task), to track and move
objects along a trajectory (non-prehensile manipulation), to
estimate the location of the surrounding obstacles (mapping)
and their compliance to find a safe path to traverse them (navi-
gation). In this study, we introduce an optical tactile sensor for
multi-contact interaction with aerial robots. Differently from
previous sensors designed for robotic fingertips [12]–[15] or
arms [16], [17], the core of our technological advancement lies
in the integration of novel hardware and software solutions.
We prove that drones can use distributed feedback, onboard
and in real-time, for estimating the compliance of different
structures, for decision-making, and for haptic mapping.

II. DESIGN

We propose a large-scale sensor shaped as an arc of a
circular ring that partially covers and protects the drone (Fig.
1A). Starting from the design presented in [18], we identify
four crucial modifications to tailor the sensor for drones.
First, in contrast to previous works that have targeted robotic
fingertips, we increase the size of the sensing area to 32 cm
by 4 cm (Fig. 1B) for simultaneous measurements on multiple
points. This surface is made of soft silicone hosting sparse
markers. Second, the choice of a curved surface is motivated
by previous works that have demonstrated how the usage of
streamlined, sensorized cages - hemispherical [19] or discoid
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[20] - can be beneficial for drones to safely interact with
obstacles. Third, to keep the sensor lightweight, its inner part
is hollow, leading to an overall weight reduction by 75% (Fig.
1B). Forth, due to its large and curved profile, we place the
light source outside the sensing area and distant from it to
illuminate the whole surface homogeneously, in contrast to
illumination spread at the contours of the silicone [21] that
would not properly allow the light to propagate all over the
soft material. Thus, we propose a novel solution based on the
combination of UV LEDs and a color filter applied on the
optical unit to suppress reflections induced by the distant light
source. Finally, the outer faces of the sensor are covered to
shield the sensor from external light (Fig. 1C).

III. MULTI-CONTACT SENSING METHOD

We introduce a method (implemented in Python and ROS)
to fully retrieve rich tactile information on multiple contact
points over the sensing area. An internal camera tracks the
motion of the markers embedded in the sensing area, which
deforms when in contact with the environment. By segmenting
the optical flow obtained from the images, we consider several
portions of the sensing area independently, and by exploiting
the natural Helmholtz Hodge Decomposition (nHHD) [22] we
calculate normal and shear displacements on each subflow
(Fig. 1D). Segmentation steps are performed with thresholds
that can be tuned to achieve different performance require-
ments. Lower thresholds can guarantee a smaller minimum
detectable force. Having higher thresholds, instead, can be
helpful to reject wrong measurements, ensuring robustness to
false contacts, which is desired during flight due to vibrations
onboard. To compute 3D location (mm) and 3D force (N) at
multiple contact points, the sensor is characterized with a small
yet representative dataset, collected by applying ground truth
forces all over the sensing area, in different contact points
and from multiple orientations. This step allows to find the
polynomials that map quantities computed from the optical
flow (raw displacements, contact location in pixels, potential
field) to real-world values (mentioned above).

IV. RESULTS

The performances of the sensor are assessed i) on a testing
dataset by computing prediction errors for both contact loca-
tion and forces and ii) by applying continuous, time-varying
forces on the sensing area to validate the correct estimation
online and in real-time. The accuracy is 1.5 mm in contact
location and 0.17 N in contact forces. Multiple contacts can
be detected even when spaced only 2 cm apart.
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Fig. 1. Optical tactile sensor tailored for drones for multi-contact rich feedback. (A) Prototype of optical tactile sensor shaped as an arc of a circular ring,
integrated beneath a quadrotor. (B) Developed sensor (internal view exposed) with a sensing area of 32 cm x 4 cm. (C) Fully assembled sensor with paper
shield on the sides. (D) Software pipeline and Graphical User Interface with a window for tuning the sensor performances. (E) Compliance estimation and
landing after re-alignment. (F) Location of multiple perches mapped in the global frame, estimated onboard upon physical interaction over 5 experiments.

A. Demos
We perform two demos to demonstrate the versatility of

the sensor and its use in multi-contact scenarios, by showing
how the drone can exploit the sensor readings. The first demo
relates to the estimation of the compliance of two perches,
re-alignment above and landing onto the stiffer one (Fig. 1E).
For instance, information on the compliance can be useful to
identify a more stable location where to rest, as drones can get
a better support on stiffer perches, both in terms of stability
and energy consumption [19]. We prove that upon contact the
tactile feedback allows the drone to distinguish which perch is
stiffer and where it is located; thus, knowing the compliance of
the perches allows to decide in which direction to fly, whereas
the information on the location of the stiffer perch defines how
much it has to move to be aligned above it and then land. The
second demo involves the detection and mapping of sparse
obstacles by direct physical interaction (Fig. 1F). This can be
useful when navigating in very dense regions, as drones are
able to distinguish empty or traversable spaces from cluttered

ones. We place multiple rods of different diameter in the scene,
and showcase the simultaneous estimation of the obstacles’
location in a global frame, in order to map the environment.

V. CONCLUSIONS

The implementation of our distributed tactile sensor rep-
resents a significant step towards attaining the full potential
of drones as versatile robots capable of interacting with and
navigating within complex environments. The current design
suggests the potential adaptation of its shape, to allow for
interaction detection from all directions, and the application of
a low-friction coating, to facilitate dynamic tasks like sliding
along surfaces. We further envision the exploration of the
sensor output for novel multi-contact, multi-purpose control
strategies.
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