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I. INTRODUCTION

Granular materials (GMs) refer to a collection of solid
particles, that are formable to be flowing [1], or jamming
[2] under external forces. Some attributes of GMs, e.g.,
particle size, can be easily determined by vision. However,
other properties, e.g., particle density, require specialized
tools, like the force sensor, to be acquired. Estimating
these properties presents a greater challenge for visual-
based estimators alone. However, in everyday life, humans
could estimate attributes that typically require other sensory
modalities (e.g., taste) solely based on visual perception,
which is attributed to humans’ extensive multi-perception
training in their daily lives. Inspired by this, we propose a
multimodal training framework utilizing visuo-tactile data,
called MAE4GM (Multimodal AutoEncoder for Granular
Material). By training the MAE with visual and tactile
signals, the model is ultimately capable of estimating particle
properties and mechanical signals solely based on visual
cues. The overview is summarised in Fig. 1.
Main contributions:

• We propose an MAE framework for GM property
estimation as well as force inference using visuo-tactile
signals from GM-probe interaction.

• We propose a particle tracking algorithm that extracts
granule motion features from visual streams, facilitating
multimodal learning with MAE.

• We extensively validate the generalization capability of
the proposed model for unseen GMs, different data
collection equipment, and scenarios.

To the best of our knowledge, it is the first work to study
property estimation for GMs using visuo-tactile learning.
Videos are available at https://sites.google.com/
view/mae4gm/site.

II. METHODOLOGY

A. Physical Principle

This paper is based on the physical principles of GM-
probe interaction [4]–[6], as explained in Fig. 1-(a). The
advancing probe will create an area in front of it, that is
the failure wedge zone [3]. Particles in this area block the
probe’s movement and generate force Fd , which can be
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Fig. 1. Overview. (a) GM-probe interaction. The advancement of the probe
creates a failure wedge zone [3], where the force Fd exerted on the probe
originates from the resistance of particles within this zone. The reaction
force F ′

d will disturb ambient GMs.. (b) Visuo-tactile data. Force sequence
Fd is measured by the F/T sensor, and the granule motion is extracted by
the proposed particle tracking algorithm from a video clip. (c) Workflow
of MAE4GM and inherent physical relationship. The input of MAE is
the extracted visual information of granule motion and the output is time-
series force sequence. Then GM properties are estimated based on its latent
features. From (1), the force Fd received by the probe is determined by
particle size and density, and its reactive force F ′

d propels them into motion.

experimentally expressed as [7]

Fd = ηρgdcH2, (1)

where ρ and dc refer to the density and particle size of
GMs. So, we try to estimate GM density and size from latent
embeddings using force Fd and resulting granule motions.

B. Dataset and Framework

In this study, we employ the UR5 robot arm to collect
visuo-tactile data (see Fig. 1-(b)) in 15 common GMs, as
depicted in Fig. 2. Here, we designate 10 GMs as “seen ma-
terials”, while the remaining ones are considered as “unseen
materials” absent from training, whose IDs are displayed on
the green background in Fig. 2.

The framework of proposed MAE4GM is an encoder-
decoder structure, as shown in Fig. 1-(c). Instead of directly
inputting the video into the MAE, we preprocess the data by
applying the proposed particle tracking algorithm to further
extract the motion of particles. Since both the input and
output are temporal signals, we employ two 3D convolutional
layers to extract features from granule motion in the encoder
and four 1D deconvolution layers are used to predict the force
sequence in the decoder.

III. RESULTS

We will show the trained model provides accurate es-
timations of GM properties and force sequences, as well
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as its generalization ability to unseen GMs, different data
acquisition devices, and scenarios.

A. Property Estimation and Force Inference

In Fig. 2-(a), we observe a distribution pattern where par-
ticle sizes range from small to large, exhibiting a progression
from the bottom-left to the top-right. Red circles cluster in
the bottom-left (smaller GMs like millet, cassia seed, cat
litter). Moderate-sized GMs (coffee bean, shelled peanut)
are concentrated in the middle. Larger particles (broad bean,
large macaroni) with non-spherical shapes are found in the
top-right. In Fig. 2-(b), we discover a distribution pattern
of particle density ranging from small to large, exhibiting a
clustering feature from the two ends towards the center.

Fig. 2-(c) shows the contact force estimation predicted by
the trained model for GMs from the test set, e.g., cassia seeds
and millet. The estimated forces (red dashed line) closely
align with the real forces (blue solid line). Furthermore,
we also test the model on unseen GMs. E.g., the model
excels with sands but struggles with sunflower seed’s force
fluctuations despite generally aligned mean values.

Fig. 2. Granule property estimation and force inference. The GM name
(top-left), particle size category (bottom-left), and measured weight (unit:
kg) (bottom-right) are presented for each GM. IDs of unseen GMs are
displayed on the green background. (a) GMs are arranged diagonally in
order of particle size in the low-dimension space from latent features.
(b) GMs with large densities tend to be more concentrated in the latent
embedding. Here, circle size refers to the value of particle density, and its
color indicates particle size. (c) Force inference on seen and unseen GMs.

B. Generalization Validation

Fig. 2 already gives the model’s property estimates and
force predictions for unseen GMs. In Fig. 3, we use handheld
devices instead of a robot arm to collect videos in two GMs.
The trained model accurately estimates properties for seen
GM (coffee bean) and shows reasonable estimates for unseen
GM (sunflower seed) in the latent embedding.

Furthermore, we extend the data collection scenario to the
natural environment rather than in the confined laboratory.
Similarly, we use handheld devices to capture the GM-probe
interaction on a beach (top left of Fig. 4-(a)) and take
samples from 3 locations depending on the water content

in sands (bottom right of Fig. 4-(a)). In Fig. 4-(a), we can
see that GM 15 and GM 16 are located near the center
of the latent space, indicating that the model considers
these 2 GMs to have relatively high density, which aligns
with the observed property distribution of sands in Fig. 2.
Additionally, the model assigns GM 15 and GM 16 with
medium (or slightly large) particle sizes, which corresponds
well to the aggregation of sand particles in the presence of
water, as observed in the videos. GM 17 exhibits large-scale
cracking due to significant moisture content, which deviates
from conventional GM motion, making the model unable to
generalize. However, GM 15 and GM 16 with lower moisture
content exhibit traditional granule movement. Despite the
limitations of manual video collection, we observe increased
probe resistance with higher water content, validated by
inferred force sequence in Fig. 4-(c).

Fig. 3. Using a handheld device, we collected videos of a vertical
probe dragged through GMs. We tested the model’s generalization on seen
(coffee bean) and unseen (sunflower seed) GMs, displaying their estimated
properties with dashed green edges.

Fig. 4. Using a handheld device on a beach, we take videos from 3
sampling sites with varying water content in beach sands (see (b)). (a) The
model estimates the size and density of GM15 and GM16, aligning with
video observations. However, the model fails to generalize to GM17 due
to its high water content, resulting in different granule motions. (c) The
estimated probe force correlates with the force we felt in the sampling,
increasing with water content.
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