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Abstract— Sensing and locating pressure stemming from the
physical interaction between a soft robot and its environment is
crucial for deploying such robots in real-life scenarios. Sensors
capable of high sampling rates are necessary to adapt the
robot’s real-time behaviour. This extended abstract summarises
a soft sensor skin and sensing strategy for optical tomography-
based systems. The optical skin consists of a transparent sensing
layer with twenty-four optical fibres transmitting light into the
transparent layer and twenty-four optical fibres transmitting
light from the sensing layer to a camera. Unlike traditional
tomography systems that transmit light through the soft sensor
sequentially, we proposed a strategy that concurrently illumi-
nates the sensor with multiple light sources and reads out the
sensor response. We conducted experiments to demonstrate that
our approach enables robust pressure estimation and contact
point localisation with up to 91.1% accuracy (compared to
70.3% at a lower sampling rate).

I. INTRODUCTION

Soft robotics has become increasingly popular in recent
years, mainly because of the compliance that enables them
to work safely in human-robot interactions. This compliance,
on the other hand, also creates challenges in modelling the
kinematics and controlling the soft robots [1]. Soft sensors
have been proposed to sense external and internal stimuli
without compromising the advantageous degrees of freedom
offered by the soft bodies of these robots. Various sensing
technologies have been used in developing these compliant
sensors, such as resistive [2], capacitive [3], [4], magnetic [5],
and optical [6], [7].

This article discusses a novel tactile sensing strategy for
optical tomography-based skin sensors. This sensing strategy
allows for faster and more accurate pressure estimation and
localisation as compared to the traditional or sequential
switching strategy as presented by [8].

II. MATERIALS AND METHODS

In optical tomography, the analysis of the light transmitted
and scattered through an object can help us to estimate the
geometry and structure of that object. When probing soft
transparent materials, optical tomography can be applied to
estimate the pressure that caused the deformation of the
sensing material.
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Fig. 1: This figure shows the experimental setup consisting of
an optical skin laid on a 3D-printed tray that holds the optical
fibres. The tray is fixed on a 3D-printed hollow cylinder that
acts as camera housing and PCB holder for the LEDs.

The skin sensor design employed in this study is quite
similar to the one introduced in a previous work [8]. It
consists of a soft, transparent layer made of a 1.2mm-thick
Solaris Smooth-On layer. This transparent sensing layer has
24 emitters and 24 receivers optical fibres embedded into
it. To transmit and receive red light with a wavelength of
633nm, we used 1mm-diameter optical fibres (Mitsubishi
ESKA FF-SH 2001-J). To isolate the transparent SOLARIS
layer from ambient light, we added a soft 0.2mm-thick black
EcoFlex 00-30 layer on top of it. Our skin’s total diameter
measures 80mm, with optical fibres embedded 7.5mm into
the transparent layer, resulting in an effective sensing area
with a diameter of 65mm. To assess our skin’s spatial
resolution, we divided this area into 60 sectors by brushing
aluminium powder onto the top of the protective black
EcoFlex layer with a spatial resolution of 7.5mm.

To individually control each LED, we connected them to
a Raspberry Pi 3B+. This setup enables us to carry out se-
quential and concurrent LED switching and compare the two
tomography methods using the same connections. Instead of
using individual photo-sensors, we opted for a commercially
available webcam to estimate the light intensity of each
optical fibre as it is both cost-effective and compact. Receiver
optical fibres carrying the light out of the sensing medium
are held in front of the camera, giving us feed at a resolution
of 1280x720 pixels at a rate of 30 frames per second.

To exert pressure, a flat-ended indenter with a diameter of



Fig. 2: Soft sensor skin based on optical tomography using
optical fibres as a means to emit and receive light. The
skin can easily be applied on any surface and only contains
soft and deformable components, without any embedded
electronics.

5mm is fixed to an Instron 5967 Universal Testing Machine
to apply, step by step, a sequence of 18 forces per node. The
range of force the machine applies increases from 0.2N to 3N
in increments of 0.2N, with additional forces of 0.5N, 1.5N,
and 2.5N included. 30 samples were collected for each force
and each node resulting in 1800 samples for both sequential
and concurrent switching. We also collected 1800 samples
with no indention to keep the data balanced. For estimating
the force and the location, we employed Machine Learning
models available in scikit-learn library [9].

III. RESULTS AND DISCUSSION

The accuracy and F1-score for each of the three classifiers
used to predict pressure localisation for both data collection
strategies are shown in the table I.
TABLE I: Accuracy and F1-score comparison for node
localisation between sequential and concurrent switching of
LEDs for 3 classifiers

AdaBoost Random Forest SVM
Acc. F1 Acc. F1 Acc. F1

Sequential 0.542 0.555 0.703 0.697 0.699 0.706
Concurrent 0.656 0.669 0.903 0.898 0.911 0.907

It is noteworthy that the accuracy and F1-score reported in
Table I are consistently higher for concurrent LED switching,
regardless of the classifier. For concurrent switching, the
SVM classifier performed the best with an accuracy of 91.1%
and an F1-score of 90.7%.

For each data collection approach and for each regressor,
the final RMSE obtained on the validation and test sets is
reported in Table II.

TABLE II: Validation and test RMSE comparison for pres-
sure estimation between sequential and concurrent switching
of LEDs for 3 regressors

AdaBoost Random Forest SVM
Valid Test Valid Test Valid Test

Sequential 35.2 35.7 24.1 30.9 37 36.4
Concurrent 32.4 32.6 14.5 17.2 26.6 27.7

It is quite evident from the II that the pressure estimation
results are consistently better for concurrent switching. Ran-
dom Forest performs the best for forces from 50.93 kPa and
152.79 kPa, even for unseen data. At pressures below 50.93
kPa the regressors report higher RMSE.

IV. CONCLUSIONS

The paper proposes a new approach for optical tomog-
raphy, where all light sources are switched on concurrently
instead of sequentially. This results in a significant increase
in the sampling rate and improved pressure localisation and
estimation performance. The localisation accuracy is reported
to be 91.1% for concurrent, with a maximum error of 7.5mm,
and is 20% better than sequential switching. The sensor can
also accurately estimate pressures of 50.93 kPa or above.
The future work includes the performance improvements of
the sensor skin by using deep learning. Moreover, we also
intend to run experiments for multiple contact detection.
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