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Attention of Robot Touch: Tactile Saliency Prediction
for Robust Sim-to-Real Tactile Control

Yijiong Lin, Mauro Comi, Alex Church, Dandan Zhang, Nathan F. Lepora

Abstract—To improve the robustness of tactile robot control
in unstructured environments, we propose and study a new
concept: tactile saliency for robot touch, inspired by the human
touch attention mechanism from neuroscience and the visual
saliency prediction problem from computer vision. In analogy
to visual saliency, this concept involves identifying key infor-
mation in tactile images captured by a tactile sensor. While
visual saliency datasets are commonly annotated by humans,
manually labelling tactile images is challenging due to their
counterintuitive patterns. To address this challenge, we propose
a novel approach comprised of three interrelated networks:
1) a Contact Depth Network (ConDepNet), which generates a
contact depth map to localize deformation in a real tactile image
that contains target and noise features; 2) a Tactile Saliency
Network (TacSalNet), which predicts a tactile saliency map to
describe the target areas for an input contact depth map; 3)
and a Tactile Noise Generator (TacNGen), which generates noise
features to train the TacSalNet. Experimental results in contact
pose estimation and edge-following in the presence of distractors
showcase the accurate prediction of target features from real
tactile images. Overall, our tactile saliency prediction approach
gives robust sim-to-real tactile control in environments with
unknown distractors. Videos for all the experiments are presented
in: https://sites.google.com/view/tactile-saliency/.

I. INTRODUCTION

High-resolution tactile sensing is seeing greater use in robot
manipulation as a complement to vision, due to its ability to
reveal fine-grained details in local contact [1], [2]. Despite its
potential, the research community has predominantly focused
on tasks with idealized experimental conditions, disregarding
the impact of noise and distractors [3]–[5]. This has resulted in
a limited understanding of how to achieve robust tactile control
in unstructured environments, where unexpected stimuli can
impair the accuracy of controllers or policies relying on tactile
sensing (as shown in Fig. 1b), making it difficult to achieve
precise control in tactile-oriented tasks such as contour fol-
lowing and tactile exploration [6]–[8]. Therefore, it is crucial
to develop a methodology that can effectively distinguish
between target and noise features in tactile feedback, enabling
robust tactile control in unstructured environments.

To better describe this problem, we propose a new concept
for robot touch: tactile saliency. Analogous to visual saliency
in computer vision, we define tactile saliency to describe
the critical regions of interest for a robot in a tactile image
obtained by a tactile sensor. For example in Fig. 1b, a tactile
saliency map can indicate a target feature of edge from a real
tactile image captured by a tactile sensor during a contour-
following task in an unstructured environment. However,

All authors are with the Department of Engineering Mathematics and
Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1UB, U.K.
(email: {yijiong.lin, mauro.comi, a.church, ye21623, n.lepora}@bristol.ac.uk)

overlay by 
saliency map

Visual Sensor (Camera)

Tactile Sensor (TacTip)

(b) Tactile Saliency

generate
visual 
image

overlay by 
saliency map

(a) Visual Saliency

generate
tactile 
image

Figure 1. Visual saliency vs tactile saliency: (a) an example of visual saliency
map (right) and its source visual image (mid) from SALICON dataset [10];
(b) an example of tactile saliency map (right) and its source real tactile image
(mid) obtained by a TacTip (left) contacting a target edge (white cylinder)
and a distractor (pink toy) in an edge-following task in a cluttered scene.

collecting and labelling tactile saliency data presents unique
challenges compared to visual saliency data. Unlike the latter,
which is typically collected through human labelling using eye
trackers, mouse clicks, or webcams [9], it is challenging for
humans to distinguish between target and noise features in a
raw tactile image. Additionally, tactile sensors are often soft
and delicate, making it impractical to collect a large amount
of data through direct physical contact with various stimuli
while avoiding damaging the sensors, particularly if the goal
is to learn the joint distribution of target and noise features.

To address these challenges, here we propose a novel
approach for tactile saliency prediction (Fig. 2) comprised
of three interrelated networks: 1) a Contact Depth Network
(ConDepNet), which generates a contact depth map to localize
deformation for an input real tactile image that contains target
and noise features in a simplified format; 2) a Tactile Saliency
Network (TacSalNet), which predicts a tactile saliency map to
describe the target areas for an input contact depth map; 3) and
a Tactile Noise Generator (TacNGen), which generates noise
features to train the TacSalNet, making it more generalizable
to unseen contact depth maps.

The proposed approach presents several advantages. Firstly,
it eliminates the need for human labelling, leading to a
more practical and efficient data collection process. Secondly,
with the high fidelity of generated tactile noise, it enables
accurate prediction of target features from real tactile images
in the presence of unseen noise, enhancing the robustness
of tactile control in unstructured environments. Thirdly, the
TacSalNet can be seen as a simple plug-in module for various
types of tactile-oriented control methods, such as pose-based
tactile servoing with PID control [11] or image-based deep
reinforcement learning (deep-RL) [4]. Moreover, this approach
has the potential to apply to other types of optical tactile
sensors, making it a general solution for predicting tactile

https://sites.google.com/view/tactile-saliency/
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Figure 2. Overview of the proposed 3-stage approach for tactile saliency prediction: (a) ConDepNet training for generating a contact depth map to localize
deformation in a real tactile image using a dataset of paired real and simulated tactile images. (b) TacSalNet training to predict a tactile saliency map to
capture a desired target feature for an input contact depth map with noise. (c) TacNGen training for generating noise features to train the TacSalNet.

saliency in a manner applicable to a wide range of uses.

II. METHODOLOGY

A. Tactile Saliency Prediction

Given a real grey-scale tactile image I = {Iij ∈ [0, 1] |
i ∈ {1, ..., w}, j ∈ {1, ..., h}} of size w × h and a tar-
get feature type F, we define a tactile saliency map SF

=
{

sF
ij ∈ [0, 1] | i ∈ {1, ..., w}, j ∈ {1, ..., h}

}
as a matrix of

probabilities where sF
ij is the probability of pixel Iij being part

of the feature F (e.g. an edge or surface) in the tactile image I.
We define a mapping ψF(.) : Rw×h → Rw×h as a function
that maps a real tactile image I to a tactile saliency map SF,

ψF(I) := SF. (1)

Our aim is to learn a tactile saliency prediction model to
approximate ψF, which can be used to predict a tactile saliency
map SF representing the probabilities of target feature areas
in image I. However, unlike visual saliency datasets, it is
challenging for humans to construct a tactile saliency dataset
by accurately labelling real tactile images with tactile saliency
maps. This is due to the inherent nature of marker-based tactile
images, which can present counterintuitive patterns that are
difficult for humans to identify and separate the target features
from the noise features. Thus, it is impractical to learn a tactile
saliency model ψF for F that directly predicts SF from I.

B. Contact Depth Prediction

While it is challenging to learn ψF to predict SF directly
from I, we can alternatively predict SF from a simplified
tactile image that only represents contact areas, giving a
more straightforward and interpretable representation. Here,
we define a simplified tactile image of I as a contact depth
map C =

{
cij ∈ [0, 1] | i ∈ {1, . . . , w}, j ∈ {1, . . . , h}

}
where

cij describes the contact depth level of the tactile skin in pixel
Iij . We define a mapping ϕ : Rw×h → Rw×h as a function
that maps a real tactile image I to a contact depth map C,

ϕ(I) := C. (2)

Our aim is to learn a contact depth prediction model GC
(referred to as ConDepNet) to approximate ϕ to predict a
contact depth map C representing the contact areas in tactile
image I. To collect a dataset DΓ,Φ =

{
(I,C) | (I ∈ Γ,C ∈ Φ

}
with auto-labelling, we leverage Tactile Gym [4], a simulator
for tactile robotics based on rigid-body physics. We use this
to generate simulated tactile images rendered as the contact
depth map captured by a simulated tactile sensor when con-
tacting stimuli. Following a general image-to-image translation
approach in [12], we use pix2pix GAN to learn GC with an
objective in an adversarial training manner.

C. Predicting Tactile Saliency from Contact Depth

To achieve our primary aim of mapping saliency, we define
a mapping δF : Rw×h → Rw×h as a function that maps a
contact depth map C to a tactile saliency map SF for a given
target feature F:

δF(C) := SF. (3)

In other words, we can solve Eq. 1 with a composite function
of Eq. 2 and Eq. 3, because a contact depth map C preserves
the contact information in a real tactile image I,

δF(ϕ(I)) = δF(C) = SF = ψF(I). (4)

Thus our aim reduces to learning a tactile saliency pre-
diction model GSF (referred to as TacSalNet) to approximate
δF for a target feature F that predicts a saliency map SF

representing the target areas in C. Similar to ConDepNet, we
also apply pix2pix GAN to learn GSF .

D. Tactile Noise Generator

We could use a simulated tactile sensor to interact with
noise stimuli in Tactile Gym to collect a set of noise contact
depth maps ΦN for learning a TacSalNet. However, this is
inefficient as various stimuli CAD models are required. Also,
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Table I
Real-world validation with similarity metrics for TacSalNet-1 and

TacSalNet-2 over 1000 samples. Bold numbers denote the best results.

AUC-J ↑ SIM ↑ CC ↑ NSS ↑
TacSalNet-1 0.995 0.984 0.957 4.629
TacSalNet-2 0.995 0.972 0.936 4.288
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Figure 3. Real-world evaluation of tactile saliency prediction based on the
tactile PoseNet prediction accuracy on the target feature (edge) distracted by
various everyday objects: (a) the distraction setup with everyday objects of
various shapes; (b) real tactile images of the local contact paired with related
contact depth map and tactile saliency map; (c) tactile PoseNet prediction
accuracy on 2D edge pose without and (d) with tactile saliency prediction.

the noise patterns are unlike those we see in contact depth
maps generated from a ConDepNet in real-world experiments.
Therefore, we propose a generative model τ to generate
random noise features, which we call Tactile Noise Generator
(TacNGen), as shown in Fig. 2c.

III. EXPERIMENTS AND RESULTS

A. TacSalNets with Different Tactile Noise Generation

First, we conduct an ablation study to compare the perfor-
mance of our tactile saliency network (TacSalNet) when the
noise is generated using our proposed noise generation model
(TacNGen) versus a 2-dim multivariate Gaussian distribution.
For conciseness, we will refer to the TaSalNet trained with
noise generated from TacNGen as TacSalNet-1, and the one
trained with Gaussian noise as TacSalNet-2. The evaluation
process uses the same pose ranges as those used during data
collection. We evaluate the performance of both TacSalNets
with four commonly-used metrics in visual saliency research,
and the testing results are reported in Table I. The results
demonstrate that the TacSalNet-1 outperforms the TacSalNet-2
in three metrics and one the same, indicating the effectiveness
of our TacNGen in improving the performance of tactile
saliency prediction compared to domain-agnostic stochastic
noise generation. Additionally, we found that even though they
are only trained with straight-edge features, the TacSalNet-1
can generalize well to unseen corner-edge features while the
TacSalNet-2 tends to preserve the noise features. Thus, we
only consider the TacSalNet-1 (TacNGen-based) for the eval-
uation of our whole framework in the contact pose prediction
task and the edge-following task.

B. Tactile Saliency Prediction for Contact Pose Estimation

In our second experiment, we evaluate the performance
of tactile saliency prediction in improving tactile pose pre-
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Figure 4. The diagram of two types of sim-to-real tactile control methods
augmented with tactile saliency prediction for the edge-following task with
unexpected distractors. The network in green is trained with real-world and
simulated data, while the ones in red are obtained solely in simulation and
applied to the real world without fine-tuning.

Table II
MAEs of the trajectories from the ground truth for the edge-following task

with distractors using pose-based PID control and Image-based deep RL
policy without and with TacSalNet-1 (short for TSN-1 in this table).

Objects Pose-based PID Image-based deep RL
w/o TSN-1 w/ TSN-1 w/o TSN-1 w/ TSN-1

Square Fail 0.77mm Fail 1.04mm
Foil Fail 0.53mm Fail 0.94mm

Flower Fail 0.76mm Fail 1.03mm
Volute Fail 0.91mm Fail 1.21mm

diction accuracy in the presence of distractors. To achieve
this, we apply the TacSalNet-1 to a tactile PoseNet, which
is a Convolutional Neural Network that predicts pose from
tactile images [7], and investigate its impact on predicting the
target edge 2D pose (position y and orientation Rz) from a
tactile image when the TacTip statically contacts the target
edge and distractors (see Fig. 3a). Here, we present three
everyday objects1 considered as distractors varied in shapes,
each distractor is fixed next to the target edge, with distances
ranging between [7, 14]mm.

The experimental results show that the presence of the
distractors significantly impairs the standard PoseNet perfor-
mance, resulting in mean absolute errors (MAEs) of 1.84-
2.41mm and 14.0◦-30.0◦ for predicting position y and orienta-
tion Rz respectively (Fig. 3c). However, when the TacSalNet-1
is applied, the PoseNet can maintain its accuracy with position
y MAE of 0.26-0.40mm and orientation Rz MAE of 4.44◦-
5.06◦ (Fig. 3d). Importantly, tactile saliency prediction does
not degrade the PoseNet performance, as evident from the
marginal difference in MAEs between the results with and
without TacSalNet-1 is minor (the first row in Fig. 3).

To demonstrate the generalizability of our tactile saliency
prediction method on various real-world noise features, we
randomly selected real tactile images with paired contact depth
maps and tactile saliency maps induced by static contact with
different distractors (Fig. 3b). In the last pair of tactile images
of Fig. 3b, we see the TacSalNet-1 accurately predicts the
target edge shape even in the presence of distracting contacts
that were unseen during training.

C. Tactile Saliency Prediction in the Edge Following Task

In our third experiment, we investigate the performance of
the tactile saliency prediction in improving the robustness of

1Results for other distractors and videos for all the experiments are
presented in: https://sites.google.com/view/tactile-saliency/.

https://sites.google.com/view/tactile-saliency/
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Figure 5. Evaluation of the proposed tactile-saliency-based control framework
in the real-world 2D edge-following task: (a) the target objects are surrounded
with distractors; (b) the TacSalNet-1 can accurately predict the target-feature
shapes that are unseen during training; (c) edge-following performance for
both pose-based PID control and (d) image-based deep-RL control: the black
line denotes the trajectory of the TacTip, the blue arrow denotes the starting
pose, and the red arrow denotes the orientation of the TacTip with the pose-
based PID controller.

different tactile control methods during an edge-following task
that involves distractors. Specifically, the robot is tasked to
control its tactile sensor to follow along the edges of four
target objects chosen to have distinct edge features. These
target objects are surrounded by at least four distractors fixed
next to their edges with distances between [7, 12]mm (Fig. 5a).
In this task, we focus on the effect of the distractor as the
edge changes in curvature, considering just one type (the bolt)
given the effectiveness of the TacSalNet-1 for all distractors
considered in Sec. III-B.

We consider two distinct state-of-the-art tactile control
methods: 1) tactile pose-based PID control [11], and 2) tactile
image-based deep reinforcement learning [4]. Note that both
the pose-based PID controller and the image-based deep-RL
policy are learned solely in simulation with the contact depth
map as input, and apply to the real world without fine-tuning.
To evaluate whether our proposed method can improve the
robustness of these control methods in the presence of distrac-
tors, we augment them with TacSalNet-1 (pipeline in Fig. 4).

The experimental results2 (Fig. 5) indicate that the use
of either tactile control methods alone in the presence of
distractors is insufficient to successfully complete the task,
as the robot becomes distracted by bolts and fails away from
the edge of the target objects. Thus neither control method
alone is robust to unexpected distractions. However, when the
TacSalNet-1 is used to predict tactile saliency to augment the
tactile input to both control methods, the robot successfully
achieves the task by completing a circuit of the object.

The accuracies of the pose-based PID controller and the
image-based deep-RL policy with tactile saliency prediction
from 80 real-world tests (10 for each object with each method
combination) are 0.5-0.9 mm and 0.94-1.21 mm respectively
(Table II), compared to an overall distance traveled of 300-
520 mm. Overall, the saliency prediction gives a significant
improvement in the robustness of sim-to-real tactile control.

IV. DISCUSSION AND FUTURE WORK

In this work, we introduce the concept of tactile saliency
inspired by visual saliency, to describe the target features
from real tactile images captured by optical tactile sensors,
for improving the accuracy and robustness of tactile control

2Results for other target objects and videos for all the experiments are
presented in: https://sites.google.com/view/tactile-saliency/.

in the presence of distractors. To develop a generalizable
tactile saliency prediction network, we propose a 3-stage
approach. Notably, we only train the ConDepNet using real-
world data, while the TacSalNet and TacNGen are trained
solely in simulation.

We validated our approach in the real world by demon-
strating the efficacy of tactile saliency prediction alongside
previous works in: 1) improving tactile pose prediction ac-
curacy [3], [7] in the presence of different distractors (Sec.
III-B); 2) enhancing the robustness of two different sim-to-
real tactile control methods, namely pose-based PID control
[11] and image-based deep reinforcement learning [4], during
an edge-following task that involves distractors (Sec. III-C).

Our proposed approach offers several key advantages.
Firstly, it eliminates the need for labour-intensive human
labelling, resulting in a more efficient and practical data col-
lection process. Secondly, with the high fidelity of generated
tactile noise, it enables accurate prediction of target features
from contact depth maps in the presence of unseen noise,
enhancing the accuracy of the contact pose prediction and
the robustness of tactile control in unstructured environments.
Thirdly, the TacSalNet can be seen as a simple plug-in module
that can extend readily for various types of sim-to-real tactile
control methods, such as the ones we considered here [4], [11].
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