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Plasticine Manipulation Simulation with Optical
Tactile Sensing

Zixi Chen1, Shixin Zhang2, Yuhao Sun3, Shan Luo4*, Fuchun Sun5, and Bin Fang5*

Abstract—Deformable object manipulation is a difficult task
for robots, and plasticine is one of the most challenging objects
owing to its varying deformation properties. Previous works
propose plasticine manipulation strategies by Reinforcement
Learning (RL) in simulation, however, the observations used in
these works cannot be transferred into reality. In this work,
we introduce optical tactile sensors into plasticine manipulation
simulation as end effectors to produce transferable observations.
Such sensors can provide tactile images as the observations
which are available in both simulation and reality. The simulator
Tacchi is leveraged for RL environment setup, with the von
Mises yield criterion used in elastoplastic object modelling.
The experiments show the observations and rewards in the
proposed simulation environment that can be used benchmark
the plasticine manipulation task.

I. INTRODUCTION

Robot manipulation is a popular research topic, and de-
formable object manipulation is a sophisticated problem in this
area. Due to the softness and complex deformation properties,
such objects are hard to model. However, deformable objects
widely exist in medical, industrial, and home environments.
In this kind of object, elastoplastic objects like plasticine
are the most challenging objects, which show plasticity and
elasticity under different interaction conditions. There are
some works that aim to manipulate plasticine in simulation via
RL [1], [2], but no observation available in reality is proposed.
Detailed plasticine shapes are applied as observations, but such
observations cannot be collected with real robots.

In order to generate transferable observations in simulation
and prepare for RL, we include optical tactile sensors as
end effectors. Optical tactile sensors [3], [4] provide tactile
sensing signals with tactile images. The simulator Tacchi [5]
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is applied in this paper, which uses the Moving Least Squares
Material Point Method (MLS-MPM) as the simulation method
and Taichi [6], a parallel programming language for high-
performance numerical computation. Following [1], this paper
exploits the von Mises yield criterion [7] in elastoplastic prop-
erty modeling. We also design observations and rewards for
RL. Experimental results show that during designed behaviors,
the rewards and observations change, which is the preliminary
preparation for RL.

II. SIMULATION METHOD

This paper uses Tacchi as the simulator. The application of
MLS-MPM and Taichi endows Tacchi with the ability to sim-
ulate deformation with a low computational cost. This method
represents objects with particles and defines an imaginary grid
for interaction simulation, as shown in Figure 1.
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Fig. 1. The simulation process of MLS-MPM. Two gel layers (represented as
blue particles) are controlled to press against a plasticine cube (represented as
red particles). The intersection points of the black dotted lines are grid nodes.

MLS-MPM includes four steps: initialization, particle-to-
grid, grid-to-particle, and particle advection. In initialization,
the grid and particles including object information like mass
and deformation gradient are initialized. Then, each grid node
collects object information from nearby particles in particle-
to-grid. After that, each particle collects object information
from nearby grid nodes in grid-to-particle. The two steps
above simulate the particle interaction. Finally, in particle
advection, the particles move according to their velocities.
The deformed gel layer surface is reconstructed making use of
the particles in the top layer representing the elastomer, and
the optical method in [8] renders the surface depth maps into
tactile images. All the details can be found in [5].

Considering the elastoplasticity of plasticine, we introduce
the von Mises yield criterion [7] in the grid-to-particle step.
Specifically, this method determines whether a particle de-
forms in an elastic or plastic way. Suppose that F is the
particle deformation gradient. The trial Hencky strain σ is
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derived by singular value decomposition F = UσV . In this
case, the von Mises yield criterion is

δγ = ∥dev(σ)∥ − σy

2µ
, (1)

where dev(σ) = σ − tr(σ)
3 I; σy denotes the yield stress

parameter defined by the material property, 100 in this work
based on trial and error. This criterion determines the final
Hencky strain and deformation gradient:

F =

{
UσV, δγ ≤ 0,

U(σ − δγ dev(σ)
∥dev(σ)∥ )V, δγ > 0.

(2)

III. RL PREPARATION

In this section, the RL environment is built, and tactile
images are provided as observations. Two tasks are proposed
as the basic manipulation behaviors, which are reposition and
squeeze, and rewards are designed according to these tasks.

The simulation environment is shown in Fig. 2. In the exper-
iment, two optical tactile sensors are controlled to manipulate
plasticine, as shown in Fig 2-(A). Tacchi only includes two
gel layers and plasticine in the simulation, as shown in Fig 2-
(B). The two sensors gently touch the plasticine in the initial
situation.
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Fig. 2. (A): Plasticine manipulation diagram. Two optical tactile sensors
mounted on robot arms are applied as end effectors. A plasticine cube is
held and manipulated by these sensors. (B): Initial simulation. This diagram
is the plasticine and gel layer simulation corresponding to (A). Red particles
represent the plasticine, and green particles represent the gel layers.

The desired situations of the two tasks are shown in Fig.
3-(A) and (B). In the squeeze task, two sensors are moved
along the z-axis, and the height of the plasticine achieves
the desired value. The reward will be the opposite value of
the distance between the current and desired heights. In the
reposition task, the top sensor is moved on the x-y plane,
and the plasticine will be moved to the desired position. The
reward will be the opposite value of the Euclidean Distance
between the current and desired positions. The observations
are tactile images produced by Tacchi, as shown in Fig 3-(C).

IV. EXPERIMENTS AND RESULTS

In the experiments, we control the sensors to move and show
how the observations and rewards will change. In the squeeze
task, the two sensors move close to each other and squeeze
the plasticine, hence the height arrives at the desired value at
first and then continues decreasing. In the reposition task, the
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Fig. 3. The desired situations of the task reposition (A) and squeeze (B). (C):
Tactile images are used as the observations.

upper sensor is controlled to move to the upper right. In this
case the plasticine will first reach the desired position and then
get away from it. The rewards and observations during these
two manipulations are shown in Fig. 4. All the experiments
are taken in simulation.
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Fig. 4. The reward change, observations and deformations during the
manipulation for squeeze (A) and reposition (B) tasks.

In Fig. 4, both of the rewards improve at first since
the simulation environments are getting close to the desired
situation, but then the rewards decrease. The observations
reveal the change of various interactions. To this end, the
experimental results show that this simulation environment and
RL implementations are proper for future RL works.

V. CONCLUSION AND FUTURE WORK

This paper creates a plasticine manipulation simulation
environment whose observations are transferable to reality.
Tacchi is utilized as the simulator since it can include elastic
and elastoplastic objects in the simulation, and the von Mises
yield criterion is used in plasticine modelling. With the results
of rewards and tactile images as observations in preliminary
tasks squeeze and reposition, we show the potential of using
the proposed simulation environment to benchmark the RL
algorithms for the plasticine manipulation task.

In the future, we will attempt to apply other tactile informa-
tion like tactile flows as observations for RL. Some complex
tasks, like kneading plasticine into a cylinder or sphere, will
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also be considered. Future work may also use the manipulation
strategy obtained from the simulation environment in real
world experiments.
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