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Abstract—Humans rely on their senses of vision and touch to
build a 3D understanding of their physical surroundings. This un-
derstanding is critical in various fields of robotics, including those
related to dexterity. Recently, there has been a growing interest in
exploring and manipulating objects using data-driven approaches
that utilise high-resolution vision-based tactile sensors. However,
existing techniques present some limitations, such as the inability
to reconstruct concave surfaces, difficulty in generalising over
unseen shapes, and lack of flexibility due to the use of discrete
data structures. To address these issues, we propose a Deep
Learning approach for 3D shape reconstruction that leverages
the rich information provided by the open sourced vision-based
tactile sensor TacTip and the expressivity of the continuous
implicit neural representation DeepSDF. Our technique consists
of two components: (1) a Convolutional Neural Network that
maps tactile images into local meshes representing the surface
at the touch location, and (2) an implicit neural function based
on DeepSDF that predicts a signed distance function to extract
the desired 3D shape. Our approach demonstrates promising
capacity in reconstructing a 3D shape from touch inputs. We
believe that shape understanding will contribute to a larger effort
to the development of safe and robust robot learning algorithms
for physical world interaction using tactile sensing.

Index Terms—tactile sensing, robot perception, 3D reconstruc-
tion, neural fields

I. INTRODUCTION

The current state of 3D shape reconstruction research is
primarily concerned with the sense of vision [1] [2]. Recently,
data-driven methodologies that utilise vision-based tactile sen-
sors have been proposed as a way to improve object explo-
ration and manipulation tasks [3]. Compared to solely camera-
based sensing, these tactile sensors provide a range of benefits,
such as the ability to capture detailed contact information, and
being effective even when an object is occluded. Additionally,
they simplify the translation of simulated tasks to real-world
scenarios as they require a smaller observation space [4].

Smith et al. [5] proposed a technique that leverages the rich
information provided by vision-based tactile sensors for 3D
shape reconstruction. The DIGIT tactile sensor [6] is employed
in this method, but its flat design restricts its effectiveness
in handling objects with concave surfaces. Additionally, the
Graph Convolutional Network (GCN) [7] utilised for mesh
refinement often results in suboptimal reconstructions due to
its reliance on discrete data structures.
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Fig. 1. An overview of our DeepSDF-based two-step process for 3D object
reconstruction. First, a manipulation robot samples the surface of the object
to acquire a 2D tactile image. Next, a convolutional neural network maps the
2D image into a set of 3D points corresponding to the local surface of the
object where the touch occurred. A pre-trained DeepSDF algorithm uses these
point clouds to predict a continuous signed distance function that describes
the shape of the object.

Continuous implicit representations have gained attention
due to their ability to encode extensive prior information about
the continuous space of 3D shapes. DeepSDF [8] is an implicit
neural function that maps a point in 3D space to the signed
Euclidean distance between the point and the boundary of an
object. The surface where the signed distance function is zero
is a continuous and smooth surface that is representative of the
shape of the object. This model can be optionally conditioned
on a latent vector to encode an arbitrary number of shapes.
DeepSDF has also demonstrated the ability to reconstruct 3D
geometry from partial point clouds, which is useful in our
context as tactile sensors provide partial observations of an
object.

Main contribution: In this work, we present a 3D shape
reconstruction approach that uses solely vision-based tactile
sensing, specifically the 3D printed biomimetic vision-based
tactile sensor TacTip [9]. Compared to previous methods,
we employ an implicit neural representations that encodes a
smooth and continuous surface, rather than predicting a set of



independent meshes. Specifically, our framework combines a
Convolutional Neural Network (CNN) for local surface recon-
struction [5] with a DeepSDF model for mesh reconstruction.
The objects used for training these two models are a subset
of the ShapeNetCorev2 dataset [10]. The TacTip’s soft domed
structure can correctly capture geometries that may not be
accurately handled by flat sensors. This approach is fully
integrated into Tactile Gym [4] [3], a robot learning suite for
manipulation tasks designed to bridge the sim-to-real gap.

II. RELATED WORK

A. Vision-based tactile sensing for 3D shape reconstruction

The development of low-cost, open-source, and robust
vision-based tactile sensors has opened new avenues of study
in 3D reconstruction over the past few years. To the best of
our knowledge, [11] proposed the first work on active touch
exploration for object reconstruction that employs vision-
based tactile sensing (DIGIT sensor). However, this technique
heavily relies on shape priors learned by the vision model,
and predicts a voxel-based reconstruction that is not suitable
for retrieving fine details. In contrast, Smith et al. [12] [5]
proposed a different approach that decouples vision and tactile
sensing. Their method combines two novel reconstruction
models. The first model is a CNN that maps a tactile image
into a mesh representing the local 3D surface at the touch
location. The second model consists of a series of GCNs that
deform an initial spherical mesh into the desired object. This
is achieved by predicting the coordinates of a discrete number
of independent meshes whose face ordering is fixed. The
resulting reconstruction is a collection of independent meshes
instead of a single object, which displays sharp features due
to the use of fixed face ordering during the mesh refinement
process. In contrast, our approach results in a smooth and
continuous surface representing the object’s shape.

B. Implicit neural representations in robotic manipulation

Neural radiance fields (NeRFs) [13] have become increas-
ingly popular as an implicit representation in vision, graphics,
and robotics. NeRF is a function parameterised by a neural
network that encodes the occupancy of a 3D scene, similar
to DeepSDF. However, NeRF also encodes the radiance field
of a scene, enabling the generation of novel views from any
viewpoint.

An interesting application of NeRFs in vision-based tactile
sensing is the generation of synthetic tactile images. Gao et
al. [14] [15] developed a NeRF-like model to generate tactile
images of single objects, while Zhong et al. [16] proposed a
similar approach that can generate tactile images for previously
unseen objects. These approaches rely on NeRF’s ability
to encode 3D geometry but are not explicitly used for 3D
reconstruction.

Another area of research involving NeRFs is object-centric
3D reconstruction. In contrast to previous methods that require
multiple views, CodeNeRF [17] and AutoRF [18] learn a
radiance field from a single or few images. Additionally, these

methods represent multiple objects by conditioning on per-
object latent codes. Building on these approaches, [19] propose
a unified representation for 3D reconstruction and grasp pose
prediction from a single view.

NeRF-based approaches are promising for applications re-
quiring high-quality scene appearance prediction. However,
these methods are computationally expensive, although efforts
have been directed to reduce the time and data required for
training [20] [21]. For applications that require 3D recon-
struction from tactile sensors, object appearance representation
may not be necessary. Instead, an accurate representation of
the object’s 3D geometry is essential, as well as a relatively
fast inference time. To achieve this, our proposed approach
relies on DeepSDF, which is a more efficient method for
encoding and reconstructing 3D surfaces from partial obser-
vations. Compared to NeRF-based approaches, our method is
less computationally expensive and requires less training data,
making it more practical for real-world applications.

III. METHODOLOGY

To ensure the reliability of our reconstruction approach,
we utilised 600 objects that were randomly sampled from
the ShapeNetCoreV2 dataset for both training and evaluation
purposes. To ensure that DeepSDF can accurately extract
and predict a consistent signed distance function, each object
was processed to create watertight meshes, which are closed
surfaces that don’t have any gaps or holes. The reconstructing
process through tactile images sampled on the object’s surface
involves a two-step procedure (Fig. 1):

1) Tactile images to point cloud prediction: A simulated
manipulation robot, specifically a UR5 robot equipped with the
tactile sensor TacTip, samples the surface of the object. The
data collection procedure uses Tactile Gym, a robotic learning
platform developed on top of the PyBullet simulator. The touch
results in the acquisition of a single channel 2D tactile image
that represents the surface depth map. To extract the local
surface of the object at touch location, a convolutional neural
network (CNN) is employed to map the image into a set of
3D points defined in the sensor’s frame. The CNN is trained
to minimise the Chamfer Distance [22] between the predicted
and observed point clouds. This model is inspired by the touch
chart prediction model proposed in [5].

2) 3D shape reconstruction using DeepSDF: The point
cloud generated by the CNN is used as input to a DeepSDF-
based shape prediction model. DeepSDF employs a deep
neural network to learn a continuous signed distance function
that describes the shape of an object. The chosen architecture
is the one originally proposed by [8]. When conditioned on
a partial point cloud of the object’s surface, the pre-trained
DeepSDF infers a 128-dimensional latent vector that best
represents the partial point cloud. This allows the model to
encode a wide variety of objects and to reconstruct unseen
shapes through interpolation in the latent space. The inferred
latent vector is then used by the DeepSDF model to predict
the signed distance function of the volume surrounding the
object. Finally, the Marching Cubes algorithm is applied to



extract the zero-level set of the signed distance function, which
corresponds to the 3D shape of the object.

IV. RESULTS

Fig. 2 displays the point clouds (on the right) predicted
from the collected tactile images (on the left) and overlaid
onto an object. The reconstruction model is trained only on
the predicted point clouds, while the object point cloud is
presented only for visualisation purposes. The colour coding
in the point clouds represents the distance from the object
surface, where blue indicates a positive signed distance func-
tion and red indicates a negative distance. By utilising both
positive and negative samples, we increased the robustness of
the latent code inference procedure.

Fig. 2. On the left, collected tactile images on the surface of the object. On
the right, the predicted point clouds used to reconstruct the entire object.

Fig. 3 shows multiple examples of reconstructed shapes
at increasing numbers of touches. For each set of collected
images, the corresponding point clouds are predicted. The
DeepSDF model is conditioned on these predictions to infer
the shape latent code, which is then used to extract the
reconstructed mesh. Our results indicate that increasing the
number of touches improves the quality of the reconstruction.

Fig. 3. Reconstruction results of our method across different number of
touches.

V. FURTHER WORK AND CONCLUSION

In this study, we investigated the potential of the implicit
neural representation DeepSDF in encoding multiple shapes
and reconstructing them from partial point clouds generated
by tactile sensors. Our qualitative results demonstrate that
DeepSDF can successfully reconstruct objects from partial
and scattered point clouds, and that the reconstruction quality
improves as the number of touch points increases.

In the next phase of our research, we plan to improve
the DeepSDF algorithm to develop a full pipeline capable of
reconstructing objects based on simulated touches. We will test
this pipeline on a real robot using the sim-to-real approach
described in [4], which has already been implemented in
Tactile Gym. Additionally, support for multiple sensors, such
as GelSight-based sensors, will be added.

Our proposed approach will contribute to the development
of effective and reliable multi-modal robot learning algorithms
that incorporate shape understanding to enhance safety and
robustness when interacting with the physical world.
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