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Fig. 1: (Left) Our tactile diffusion model, trained on YCB-Slide and fine-tuned on 20% real braille, learns to generate realistic tactile
images from simulated contact depth. (Middle) We train a braille classifier with data generated from tactile diffusion. (Right) On reading
real braille with a DIGIT sensor this classifier outperforms classifiers trained with simulation and other approaches.

Abstract— Simulating vision-based tactile sensors enables
learning models for contact-rich tasks when collecting real-
world data at scale can be prohibitive. However, modeling the
optical response of the gel deformation as well as incorporating
the dynamics of the contact makes sim2real challenging. Prior
works have explored data augmentation, fine-tuning, or learn-
ing generative models to reduce the sim2real gap. In this work,
we present the first method to leverage probabilistic diffusion
models for capturing complex illumination changes from gel
deformations. Our tactile diffusion model is able to generate
realistic tactile images from simulated contact depth bridging
the reality gap for vision-based tactile sensing. On real Braille
reading task with a DIGIT sensor, a classifier trained with
our diffusion model achieves 75.74% accuracy outperform-
ing classifiers trained with simulation and other approaches.
Project page: https://github.com/carolinahiguera/
Tactile-Diffusion

I. TACTILE DIFFUSION MODEL

A. Tactile diffusion pre-training

We use the YCB-Slide dataset [1], which consists of
sliding contact interactions between a real DIGIT sensor
and 10 YCB objects. With the sensor poses and the object
meshes, we use TACTO simulator to recreate each trajectory
and collect the simulated depth image for each timestep.
Our dataset for training the diffusion model consists of 180k

aligned pairs of sim depth and real tactile images, split into
80% for training and 20% for testing.

For training our tactile diffusion model, we follow the
pipeline shown in Fig. 1 (left). We pre-process the ground-
truth data by subtracting from all images a real no-contact
image from the sensor. The decoder of the tactile diffusion
model uses a conditional U-Net backbone with 2 ResNet
blocks for each stage of down-sampling and up-sampling
respectively. We allow conditioning on the sim depth image
via concatenation, following [2], [3]. We use a linear noise
scheduler of (1e−4, 0.02) with T = 500 timesteps for
training and inference. We use Adam [4] optimizer with a
learning rate of 1e−4. For inference, we start the denoising
process from pure Gaussian noise with the sim depth image
as input to condition the model. The intuition is to query the
model about how the sim depth image will look when using
a real sensor. After inference, we post-process the generated
foreground by adding the no-contact image back. For training
and inference we use a RTX-3080 GPU and the inference
time of a batch of 30 images is 23 seconds.

B. Tactile diffusion fine-tuning

We fine-tune our tactile diffusion model with pairs of
(sim depth, real) images from braille contact interactions.
Our datasets for fine-tuning and testing consist of real tactile
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TABLE I: Metrics on braille classification task.

Training data
source

% real data
fine-tuning

Accuracy
% Precision Recall

Sim

- 30.23 0.34 0.30
20 64.99 0.71 0.65
80 73.11 0.80 0.73

100 73.95 0.81 0.74

Sim + data aug. - 43.48 0.61 0.43
100 73.23 0.76 0.73

cGAN - 31.18 0.40 0.31
Tactile diffusion - 75.74 0.79 0.76
Real - 100.0 1.00 1.00

Training cGAN on 100% real, tactile diffusion on YCB-Slide + 20% real

data collected from a DIGIT sensor when in contact with 27
3D-printed braille characters (letters A-Z and #). We fine-
tune the tactile diffusion model previously trained on the
YCB-Slide with 20% of the fine-tuning dataset. In Fig. 2
we show, for different letters, samples of sim, real, and
generated tactile images by tactile diffusion and cGAN as
a baseline. Although the use of cGAN to generate tactile
images is common in the literature, the models are not open-
sourced, thus we are using our implementation of cGAN,
conditioning on the same sim depth image.

Qualitatively, tactile diffusion can represent the corre-
sponding gel deformation by rendering the color changes
around the object indentations with high detail level. These
indentations correspond to the bumps that characterize each
braille character. cGAN can do it as well for some characters
but exhibits errors rendering the level of gel deformation or
skipping its representation. This is congruent with the find-
ings in [5], where the authors explain that GANs can trade
off diversity for fidelity, producing high-quality samples, but
not covering the whole distribution. In general, we found
cGAN more difficult to condition and exhibit less level of
texture detail in comparison with the images generated by the
diffusion model. Our tactile diffusion model also presents
some differences with respect to the real image. However,
these differences mostly correspond to misalignment in the
location of the bump’s indentation.

C. Tactile diffusion for reading braille

We trained this classifier using all current common ap-
proaches for tackling sim2real when using vision-based
tactile sensing. This consists of training the model using data
from sim + data augmentation (lighting randomization), sim
+ fine-tuning with real data, sim + data augmentation + fine-
tuning with real data, cGAN, and tactile diffusion. For the
last two approaches, we performed data adaptation on the
sim depth images, following the pipeline in Fig. 1 (middle).
Table I shows the performance of all these models (accuracy,
precision, and recall) when testing the models on our test
braille dataset.

Using real data to train the downstream task would be
the ideal as we guarantee that both train and test data are
under the same distribution. The braille classifier trained
directly on real data can perfectly distinguish the letters
based on the imprints of the braille characters on the sensor’s
gel. However, collecting real data is expensive and time-
consuming and prohibitive to scale. In practice, we would

Fig. 2: Example comparisons of sim, real, cGAN, and tactile
diffusion images from the braille test dataset. Tactile diffusion
consistently generates images with higher SSIM with respect to
the real sensor image. Notice that tactile diffusion does not skip
the representation of any dots in the braille character.

like to be able to train the downstream task solely in simu-
lation and achieve good performance when deployed in real.
Transferring directly the model trained on raw simulation
highlights the sim2real gap when working with vision-based
tactile data. Data augmentation improves the generalization
of the model but not enough to induce the distribution of the
real data on the training dataset. Fine-tuning the model on
real data definitely helps to improve its performance. We
investigate when most performance can be achieved with
the least amount of real fine-tuning data. Tactile diffusion
is trained on a general dataset of contacts from YCB-Slide
and fine-tuned with only 20% of the task relevant braille data.
Under these conditions, it achieves a zero-shot accuracy of
75.74% on real tactile data. Fine-tuning the simulation model
to achieve similar performance requires collecting 4 times
more real tactile data.

Comparing data adaptation techniques, tactile diffusion
has significantly better performance than cGAN. This is
expected since cGAN sometimes skips the representation
of bumps for some braille characters. These anomalies in
the tactile image can instead represent a different character
leading to missclassification, which hurts the downstream
task. Overall, these results highlight the promising future of
tactile diffusion to close the sim2real gap for vision-based
tactile sensors.
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