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I. INTRODUCTION
Cracks in the infrastructures surface are important indi-

cators for assessing the condition of buildings and need to
be repaired timely for preventing the expansion of potential
risks. However, manual crack detection and maintenance are
not only time-consuming and expensive, but also pose health
risks to human workers in harsh and complex environments
such as dams and underground pipelines. Hence, develop-
ment of an effective and robust crack detection system will
be significant for the substitution of inspection workers

In recent years, computer vision techniques such as edge
detection [1], object detection [2] and segmentation [3],
have been applied in detecting cracks in concrete structures.
However, they suffer from variances in light conditions and
shadows, lacking robustness and resulting in many false
positives. To address those issues, some researches [4][5][6]
detect cracks with tactile sensing which is less susceptible
to light and noise. In [4], a Bayesian approach is proposed
to actively estimate crack width. Nevertheless, when the
initial contact location is far away from cracks, it will take
a long time to find the crack, or even fail to find it. In
[5][6], tactile sensing was explored for crack detection and
characterization, but tactile data was collected passively and
the shape of the crack cannot be reconstructed accurately.

In crack detection tasks, skilled inspectors usually first
look at the surface to find areas with similar color or shape
characteristics to cracks, and then use their fingers or specific
tools such as a hammer or ultrasonic device to further inspect
those areas instead of traversing all regions. However, there
has been no works on crack detection using both vision
and touch yet. In this paper, we propose a novel vision-
guided tactile perception approach for crack detection and
reconstruction, with an overview of the framework illustrated
in Fig. 1.

II. METHODOLOGY

A. Visual Guidance for Touch
Visual Crack Segmentation. The visual crack segmen-

tation is treated as a semantic segmentation problem that
predicts each pixel of the input image into one of two
semantic classes: (a) background (b) cracks. To this end,
we use the Deeplabv3+ model [7] to segment the cracks
in visual images that is a state-of-art deep learning model
for semantic image segmentation. We use a weighted cross-
entropy loss with crack pixels weighted 10x more than back
ground pixels.
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Contact Points Generation. Given the predicted pixel-
wise crack mask in the color image, we can extract the
skeleton of each crack mask with pattern thinning method.
We define two types of keypoints (i.e., end points and branch
points) and minimal edges that represent the topology of the
crack pattern:

• End points: if they have less than two neighbors.
• Branch points: if they have more than two neighbors.
• Minimal edge Eij : if there is a continuous path between

two keypoints pi and pj and all points on the path are
neither end points nor branch points.

For every minimal edge Eij which consists of a number
of ordered points, the keypoint pi is initially selected as the
current contact point pcurrent. Then we iteratively choose
the next contact point pk using the following formula:

max
k

D[pcurrent, pk]

s.t. D[pcurrent, pk] < d
(1)

where D(pcurrent, pk) is the distance between two points in
world frame. The hyper-parameter d is the threshold of the
distance between two points that is related to the coverage
and speed of tactile perception. A smaller d will increase the
coverage while reducing the perception speed. In our case,
d is empirically set to four fifths of the tactile sensor’s view
length. As shown in Fig. 1, the end-point pixels and the
generated contact points are tagged with red dots and green
dots, respectively. For each contact points pi, the yaw angle
of the end-effector is parallel to the vector < pi, pn >, where
pn is the nearest contact point to pi, so that the end-effector
can contact the surface perpendicularly.

B. Tactile Crack Perception

Tactile Crack Detection. The collected tactile images are
fed to another deep convolutional network (Deeplabv3+ [7]
with ResNet-101). Since the number of background pixels
is similar to that of the background pixels in tactile images,
we use the vanilla cross-entropy loss instead of the weighted
cross-entropy loss in Section II-A.

Tactile Crack Reconstruction. First, we predict the lo-
cation of cracks on the surface of the GelSight sensor [8],
given the detected boundaries of pixel-wise masks in the
tactile images. To simplify the problem, we treat the surface
of GelSight sensor as a flat plane that is perpendicular to the
webcam’s z axis. Then we can easily calculate contact point
P = [Xc, Yc, Zc]

T in the tactile sensor coordinates based
on the P ′ = [u, v]T in the tactile image coordinates using a
pinhole camera model.



Fig. 1: An overview of our vision-guided tactile crack detection and reconstruction method. Top row (from left to right): The Deeplabv3+ model is used to segment the cracks
in the visual image. Given the visual crack mask and the depth image, a set of contact points are generated to guide the collection of tactile images. Bottom row (from right to
left): Another deep convolutional network is used to segment the crack in the collected tactile images. Given the detected tactile crack mask, the crack shape are reconstructed
based on the geometrical model of the GelSight sensor and the coordinate transforming relation between the tactile sensor coordinate and the world coordinate.

After obtaining the position P in the tactile sensor coordi-
nates, we can calculate its position PW in the world frame:

PW = TW
E TE

C P (2)

where TE
C and TW

E are the transformation matrix from
the tactile sensor coordinates to the end-effector coordinate
system, and from the end-effector coordinate system to the
world coordinate system, respectively.

III. EXPERIMENT RESULTS

We use the mean, max and standard deviation (SD) of
the shortest distance between the actual crack shape and the
reconstructed crack location to evaluate the accuracy of our
proposed method. There are four methods used for compari-
son. The vision method uses point clouds recovered through
visual detection and depth information to represent cracks. In
order to reduce the impact of depth information accuracy on
reconstruction, the aligned vision method projects the point
cloud to the table surface. The passive tactile method collects
the tactile images through traversing the whole 3D printed
structure surface.

TABLE I: Reconstruction Accuracy

Method MeanD(mm) SD(mm) MaxD(mm) time(s)
vision 0.82 0.92 4.87 1

aligned-vision 0.55 0.53 3.78 1
passive-tactile 0.20 0.17 0.99 400

guided-tactile[ours] 0.24 0.16 0.82 35

IV. CONCLUSION AND FUTURE WORK

In this paper we introduce a novel vision-guided tactile
perception for crack detection and reconstruction. The ex-
periments show that our proposed method can improve the

Fig. 2: Visual comparison of different reconstruction methods. blue, red, yellow, green
curves represent the ground truth of the crack profile, aligned-vision, passive-tactile
and our method for crack reconstruction, respectively.

effectiveness and robustness of crack reconstruction signifi-
cantly, compared to when only vision is used. Future works
to improve our method can also be considered, such as the
use of weakly supervised learning methods, and fusing the
tactile results back into the visual crack detection to improve
the next estimate of where to contact.
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