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I. INTRODUCTION

Robots need accurate, online estimates of shape and
pose while manipulating unknown objects. While vision and
depth-based tracking has been well studied [3], they are af-
fected by self-occlusion, cluttered workspaces, and poor vis-
ibility. Interestingly—even when blindfolded—humans can
infer object properties from local tactile information.

Online tactile inference is hard due to the intrusive nature
of touch sensing, and initially unknown object models.
Recently, Yu et al. [1] formulated this as a batch-SLAM
problem, relying on frictional pushing mechanics. However,
the method is not built for online tracking, and uses a
piecewise-linear discrete shape representation. Incremental,
graph-based approaches were later considered, but assume
known object model and incorporate vision [2, 4].

A Gaussian process implicit surface (GPIS) shape repre-
sentation can fuse uncertain measurements in a probabilistic
fashion, and is non-parametric—unlike [1]. Dragiev et al. [5]
use a GPIS for tactile exploration of fixed pose 3-D objects.
To our knowledge, no methods use this representation with
online pose estimation for manipulation tasks.

In this work, we combine a GPIS shape representation
with sparse nonlinear incremental optimization to localize
and infer the shape of planar objects. We demonstrate results
with simulated tactile exploration of different objects.

II. COMBINING IMPLICIT SURFACE WITH FACTOR GRAPH

A. Gaussian process implicit surface for contacts

Fig. 1: Gaussian process and its implicit surface (green) for noisy contact
measurements on the butter shape (taken from [2]). The measurements
are added sequentially; the colormap of the GP indicates uncertainty (video).

A Gaussian process regressor learns a continuous, non-
linear function from sparse, noisy datapoints [6]. In planar
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pushing, we get surface measurements as global contact lo-
cations and normals (x, y, nx, ny). The GP learns a mapping:

F : {xi, yi}i=1···t︸ ︷︷ ︸
X

7→ {di, nxi, nyi}
i=1···t︸ ︷︷ ︸

Y

(1)

where d represents
signed-distance from

object surface

{
d = 0, on surface
d < 0, inside object
d > 0, outside object

(2)

We use a thin-plate kernel function—as in [7]—which is
isotropic and simple to tune. The GP gives an output mean
function as its MAP estimate (Eq. 3), and a variance.

F̄∗ = k∗
(
K + σ2I

)−1
Y (3)

where k∗, K, and σ represent our test-train kernel, train-
train kernel, and noise on output respectively (refer [6]).
While contact points provide the GP zero-value observations,
contact normals provide gradient observations. The implicit
surface S is the zero-level set contour of F , such that:

S , {(x, y) | Fd(x, y) = 0} (4)

With more observations, S further delineates the true object
shape (Fig. 1). In our experiments, shapes are initialized with
a circular prior, an underestimate of the true shape.

B. Factor graph formulation
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Fig. 2: Combined formulation of the factor graph with GPIS contour
updates, optimizing for poses xi···t. Initialized with a circular prior, the GP
learns a better shape representation, which better informs contact factors.

Online nonlinear least-square optimization is more accu-
rate than filtering methods as it preserves the history of cost
functions over timesteps, to compute the optimal solution.
Incremental smoothing and mapping (iSAM) [8] performs
efficient updates by taking advantage of sparsity.

Given noisy time-series measurements, we formulate our
problem as a factor graph (Fig. 2). This is a bipartite graph
with variable nodes that we optimize for, and measurement
factor that constrain them. In Fig. 2, the nodes are object
poses, while the factors depend on frictional pushing me-
chanics and implicit-surface contact constraints:

https://youtu.be/LG-juQOYwgA


Fig. 3: (a) Results from incremental pose estimation, along with the GPIS contours at each timestep. The object shape is delineated over time, while being
transformed to the global frame by the object’s estimated pose. We further notice shape underestimates and contour overfitting—which will be addressed
in future work. (b) The Pybullet simulator featuring a KUKA arm manipulating the rect1 object model (video).

Pushing motion factor: Constrains consecutive poses
based on the quasi-static frictional pushing. Similar to [1],
we use an ellipsoidal limit surface approximation [9], and
assume known uniform friction and pressure distribution.
Implicit-surface contact factor: Imposes the contact mea-
surement to lie on current estimate of the GPIS contour,
and the contact direction to be towards the object.
Stationary factor: Enforces infinitesimal motion between
consecutive timesteps.
Pose prior factor: Anchors the optimization to starting
pose (assumed known).

At each iteration, the GPIS is estimated using new contact
data (Section II-A), and the backend gives us the maximum
a posteriori (MAP) pose estimate. These two processes are
carried out back-and-forth to get the best online shape and
pose hypothesis at each timestep (Fig. 2). We note that
without global pose constraints (e.g. vision), these estimates
will drift over a large number of timesteps.

III. TACTILE EXPLORATION EXPERIMENTS
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Fig. 4: Decreasing dMH for shapes due to improving estimates. Dims: (rect1
90mm side, hex 60.5mm circumradius, ellip2 130.9mm maj. axis)

Our method is evaluated on simulation experiments in
PyBullet [10]. The incremental graph optimization is per-
formed using GTSAM with iSAM2 [8]. We employ a tactile
exploration strategy—a 10mm pusher circumnavigates the
objects on a frictional plane (Fig. 3b). Pusher motion is
controlled based on previous position and contact normal.
Noise of σ = 0.1mm is added to pusher postions and contact
points. We run the simulations for 500 timesteps, for three
shapes models from [2]—rect1, hex, ellip2.

Qualitative results for the three shapes (Fig. 3a) show
the evolution of the shape contour along with planar pose
tracking. We also compute root mean squared error (RMSE)
of pose (Table I), and modified Hausdorff distance (dMH)
[11] of the transformed contour with respect to the ground
truth (Fig. 4). dMH measures mutual proximity, and neatly
captures both shape and pose error over time:

dMH(t) = max

{
1

|SX̂t
t |

∑
s∈SX̂t

t

d(s,GXt ) ,
1

|GXt |
∑

g∈GXt

d(g,SX̂t
t )

}
(5)

where d(a,B) = minb∈B ‖a− b‖. At timestep t, GXt is
the ground truth model transformed by the true pose, SX̂t

t is
the online GPIS contour transformed by the estimated pose.

IV. DISCUSSION AND FUTURE WORK

This work fuses GPIS with factors graphs for incremental
shape and pose estimation from tactile feedback. Future work
includes (i) modeling contact as lower-dimensional manifold
constraints, (ii) employing alternate pusher configurations,
(iii) efficient GPIS updates for real-time inference, and
its tighter integration into the factor graph, (iv) real-world
testing, (v) incorporating vision, and richer tactile data [12].
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