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Abstract— In the past few years, tactile sensing has attracted

great interest in robotics. A detailed understanding of the

surface textures via tactile sensing is essential for tasks like

exploration and manipulation. Previous works on texture recog-

nition have been limited to treating all the regions in one tactile

image or all the samples in one tactile sequence equally, which

includes much irrelevant information. In this paper, we propose

a novel Spatio-Temporal Attention Model (STAM) for tactile

texture recognition, which pays attention to both spatial focus

of each single tactile texture and the temporal correlation of a

tactile sequence. The improved tactile texture perception can be

applied to facilitate robot tasks like grasping and manipulation.

I. INTRODUCTION

The sense of touch is one of the important information
sources for both humans and robots to perceive the object
properties in the physical world. One of the key object
properties is the surface texture that is important for object
recognition and dexterous manipulation of objects.

Tactile sensors have been used to discriminate surface
textures to embody robots the sense of touch [1]–[3]. Similar
to video sequences collected by a camera, information is
also accumulated over a period of time by a tactile sensor, a
GelSight tactile sensor [4] used in this paper. As the sensor
scans a surface, the surface texture is recorded and tactile
data is collected in a temporal order. The temporal patterning
and correlation of tactile sequences are crucial to interpreting
the stimulus of surface textures.

Humans perceive the surface textures temporally with
tactile spatial events presented in sequences as well. When
we use our fingers to scan an object surface, both spatial and
temporal changes in skin deformation provide important cues
for fine texture perception. In this exploratory procedure,
we experience the tactile selective attention [5]: in the
perceptual area of fingers, humans focus their attention on
the points that give more excitement rather than treating
the whole contacting region equally. On the other side, the
perception is an accumulation of cognition that the previous
contact events enable a prior knowledge for the perception
and later contacts verify the previous judgement. In this
paper, we propose a novel Spatio-Temporal Attention Model
(STAM) to extract the tactile texture features spatially and
temporally. We implement the attention model in a task of
fabric texture recognition, with 100 pieces of fabrics and a
GelSight sensor.
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Fig. 1: The proposed STAM framework.

II. METHODOLOGIES

As illustrated in Fig. 1, the STAM model consists of three
parts: 1) CNNs that extract spatial features from each input
tactile image; 2) A spatial attention module which highlights
the salient features in each tactile texture; 3) Temporal
attention modules which are used to model the correlation of
salient features in different tactile images in one sequence.

A. CNN module

Each of the tactile images in the tactile sequence I =

{i1, i2, ..., in} is first fed into a pre-trained AlexNet archi-
tecture [6] to extract the spatial features. We take the output
feature map F 2 Rh⇥w⇥c from the last max-pooling layer as
the input to the spatial attention module, where h,w, c refer
to the height, width and the number of channels respectively.

B. Spatial Attention Module

In order to emphasize informative areas in each texture
frame, we develop a spatial attention module to assign
higher weights to more crucial areas, whereas lower weights
are assigned to the areas that contain less information. We
apply two pooling operations, i.e., max-pooling and average-
pooling, to the spatial feature F obtained from the CNN
module along channel axis to form spatial context descrip-
tors. The average-pooling is applied to learn tactile infor-
mation effectively while max-pooling is adopted to maintain
prominent features. These two pooling layers generate two
spatial features F S

max

and F S

avg

respectively. After that, the
F S

max

and F S

avg

are concatenated and convolved by a 7⇥ 7

convolution and a sigmoid layer to produce a 2D spatial
attention map AS(F ):
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where � denotes the sigmoid function. Then we get the out-
put feature map FS

= AS(F )⇤F from the spatial attention
module, where ⇤ refers to the element-wise multiplication.



Fig. 2: Spatial Attention Distribution. The first row rep-
resents the non-attention heat maps while the second row
represents the spatial attention heat maps. As can be seen,
more regions are activated by spatial attention mechanisms.

TABLE I: Recognition results of different models while
different numbers of tactile images are used in a sequence.

Models n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

CNNs 67.23% 72.04% 75.26% 78.06% 79.56% 81.29%
CNNs+Spatial Attention 72.12% 73.97% 78.60% 80.43% 80.43% 80.86%

STAM 76.50%76.50%76.50% 79.35%79.35%79.35% 80.00%80.00%80.00% 80.64%80.64%80.64% 81.72%81.72%81.72% 81.93%81.93%81.93%

C. Temporal Attention Module

After obtaining the extracted features of spatial attention
module from each texture frame, we concatenate all the
features together to get a sequence of spatial features FS(n).
In order to model the long-distance dependency in tactile
sequence, we develop a temporal attention module on top
of the spatial attention layer. This temporal attention mech-
anism aims to estimate the salience and relevance of all the
locations through the time regardless of distance, which takes
the information from global observations into consideration.
FS(n) is first converted into two feature spaces q(FS(n)

)

and k(FS(n)
) by two sets of 1⇥ 1⇥ 1 convolutions, where

q(FS(n)
) = W

q
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) = W

k

FS(n) (W
q

and W

k

are trainable weight matrices). The attention map
AT (FS(n)) is given as follows:
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demonstrates the extent to which temporal
attention refers to the i

th feature while updating the j

th

feature of any locations. The output feature map of the
temporal attention is F T

= (FT
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i is a linear transformation of

FS(n)
i . FS(n)

j is added back to avoid gradient vanishing.

III. EXPERIMENTS

We first conduct an ablation study with different neural
network frameworks to learn how the spatial attention and
temporal attention help to improve the recognition. More-
over, to study the impact of the length of each input sequence

Fig. 3: Temporal Attention Distribution. The first row repre-
sents the raw tactile textures in a sequence. The highlighted
regions in each image in the second row are 3 most related
clues of the green dot region to support the recognition.

TABLE II: Recognition results while some noisy data is
included in the dataset.

Models n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

CNNs 53.20% 58.20% 59.60% 61.23% 64.60% 69.40%
CNNs+Spatial Attention 55.40% 60.80% 62.60% 62.80% 65.40% 71.00%

STAM 72.00%72.00%72.00% 72.20%72.20%72.20% 75.80%75.80%75.80% 76.61%76.61%76.61% 80.80%80.80%80.80% 80.20%80.20%80.20%

on our methods, we vary the length n of a sequence from
2 to 7. As illustrated in Table I, with the help of spatial
attention and temporal attention, the recognition accuracy
improves step by step under most of the cases as the length
of sequence increases. Note that some tactile images are
collected before the GelSight sensor contacts the objects
that cannot provide useful information for the recognition.
We include these tactile images as noisy data to verify the
robustness of the models, shown in Table II. It can be seen
that the performance of our proposed STAM model still
maintains at the same level while the other models cannot
sustain the recognition accuracy compared with the accuracy
in Table I, which shows the strong robustness of the STAM
model against the noisy data. We also visualize the attention
maps, illustrated in Fig. 2 and Fig. 3, to demonstrate the
effectiveness of spatial and temporal attention modules.

IV. CONCLUSION

In this paper, we investigate the attention mechanism in
robotic tactile perception, for the first time. Our proposed
methods has resulted in significant improvement of the
recognition accuracy, by up to 18.8%, compared to the non-
attention based models. The improved tactile texture percep-
tion can be applied to facilitate robot tasks like grasping
specific objects and manipulation.
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