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Abstract— This paper describes a tactile sensing pipeline that
aims to reconstruct the contact force distribution applied to
a soft surface. The sensing principle is based on a camera
that tracks the motion of plastic particles within a deformable
material. Optical flow features are extracted from the images
and mapped to contact force distributions via a neural network
architecture. Two strategies for collecting the training data
are described, one of which can entirely be carried out in
simulation, while retaining most of the accuracy, as shown
when the architecture is evaluated on real-world sensors. The
simplicity of the hardware components employed and the efforts
towards real-time software implementation provide a platform
that is reliably available for live demonstrations.

I. INTRODUCTION
In recent years, vision-based tactile sensors have increas-

ingly been employed for robotics applications, due to their
low cost, ease of manufacture and high resolution. While
promising results have been obtained for different tasks,
the development of a pipeline that accurately reconstructs
the contact pressure and shear forces applied to the sensing
surface for general cases has up till now not been achieved.
In fact, while several techniques have been developed for the
estimation of total forces, contact shapes and locations [1],
these are generally limited to specific cases, e.g., indentations
with single objects. In contrast, a comprehensive estimation
of the contact properties may be provided by the 3D contact
force distribution. The quantities mentioned above (total
forces, etc.) can be extracted from the force distribution,
which also provides a way of handling a variety of contact
conditions (e.g., contact with multiple objects). The versatil-
ity of the contact force distribution makes it a very appealing
feedback quantity for generic robotic manipulation tasks.

While first-order accuracy can be obtained with model-
based techniques [2] by assuming linear elasticity of the
soft materials, it is generally not feasible to account for
the hyperelastic behavior of rubber in real-time. In order
to overcome this limitation, data-driven methods can be
trained on arbitrarily accurate data, while retaining short
inference times. However, since there are no readily available
sensors that can measure the force distribution applied to soft
materials without altering the contact surface, the collection
of data needed for training is not straightforward.

This paper is based on a tactile sensing principle originally
presented in [3], which uses a camera to track the motion
of green particles (see Fig. 1, (a) and (c)) randomly spread
within a soft, deformable material. The information provided
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(a) Sensor’s structure (b) Experimental indentation

(c) Internal camera image (d) Normal force distribution

Fig. 1: The images above illustrate the structure of the sensor employed and
the different steps of the sensing pipeline.

by the images about the deformation of the sensing surface
can be mapped to the contact force distribution via a data-
driven technique. Note that, as opposed to the tracking of
sparse markers, this information is retrieved at each pixel
of the image, since the particles are densely spread within
the deformable material. Here, two methods to collect the
training data are compared: in the first method, optical flow
features are obtained from experimental indentations and
matched to highly accurate ground truth force distributions,
obtained through performing the same indentations in a
simulation environment based on the finite element method
(FEM); in the second method, both the optical flow features
and the ground truth labels are obtained in simulation, where
a camera projection model is additionally employed. The
complete explanations of the two methods can be found
in [4] and [5], respectively. The two resulting datasets are
separately used to train an artificial neural network, which
yields real-world, accurate predictions at 50 Hz on the CPU
of a laptop computer. The evaluation experiments show that
the need for real-world training data can be greatly reduced.
Furthermore, the learning architecture retains sensible pre-
dictions on data different from those seen during training.

II. METHOD
In order to train a data-driven architecture that aims to

reconstruct the force distribution applied on the soft surface,
the task is formulated as a supervised learning problem. In
the following subsections, two different methods to generate
training and evaluation datasets for such a task are described.

A. Mixed-source dataset
Thousands of vertical indentations (see Fig. 1(b)) are

performed at various depths over different locations of the
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Fig. 2: The diagrams outline the two methods for data collection.

sensing surface using a spherical indenter attached to an
automatic milling machine. During these experiments, the
images from the internal camera are recorded. These images
are processed offline by extracting the dense optical flow
(based on [6]) with respect to an image frame taken at rest.
Note that, prior to the optical flow extraction, the images
are converted to gray-scale, as required by the algorithm
employed. The optical flow is then further subsampled,
performing an average pooling over a 40×40 grid for each
component.

In order to overcome the lack of commercial sensors
measuring the contact force distribution, ground truth la-
bels are assigned to the optical flow features corresponding
to each image by repeating the same indentations in an
FEM simulation environment. From the simulations, three-
channel 20×20 grids of labels are extracted, representing the
discretized contact force distributions. The simulations are
based on hyperelastic models of the materials employed, ob-
tained via state-of-the-art characterization techniques. These
models exhibit high accuracy, as detailed in [4]. For the
sake of simplicity, time-dependent behaviors of the material,
e.g., hysteresis and wear, were not considered in this work.
However, complex models accounting for these behaviors
could be employed in a similar manner to generate ground
truth labels.

The resulting dataset, comprising optical flow features and
corresponding ground truth labels, is randomly split into
training and evaluation datasets. A diagram describing the
procedure is shown in Fig. 2.

B. Sim-to-real dataset

By simulating the camera projection, the collection of real-
world data can be avoided, replacing the optical flow features
extracted from the real images with features generated in
simulation. The procedure is explained in detail in [5], and
is based on the projection of the displacement field extracted
from the FEM simulations onto the image plane, assuming an
ideal pinhole camera model. Ground truth labels are assigned
to these features as described in the previous subsection.

An evaluation dataset is collected by performing real-
world indentations on a tactile sensor. The images extracted
are remapped as if they were taken with the pinhole camera
assumed in simulation. For this purpose, standard camera cal-
ibration techniques are employed before finalizing the sensor
production, and a single real-world indentation is employed
to refine the remapping procedure. The optical flow is then
extracted from the remapped images, as outlined in Fig. 2.

III. RESULTS

The two datasets described in Section II are separately
used to train a neural network architecture, which is inspired
by u-net [7] and is described in [5]. The results on the respec-
tive evaluation datasets (with vertical forces up to 1.7 N) are
shown in Table I for the horizontal (Fx and Fy) and vertical
(Fz) components of the force distribution. Both the models
trained exhibit high accuracy in estimating the contact force
distribution and the total force applied. While the mixed-
source dataset performs slightly better, the sim-to-real model
only required a single real-world indentation and can be
transfered across multiple instances of the sensors produced,
provided that the camera calibration has been performed.

A sample prediction of the network trained on the mixed-
source dataset is shown in Fig. 1(d). The experimental
evaluation of the sim-to-real dataset is available in the linked
video1, which shows how the convolutional structure of
the network yields sensible generalization capabilities when
applied to cases with multiple points of contact and indenters
of different shapes.

The sensing pipeline reconstructs the contact force distri-
bution in real-time at 50 Hz. The system is therefore readily
available for live demonstrations, streaming the camera input,
the optical flow features and the corresponding reconstruc-
tion of the force distribution to a screen.

Metric Fx Fy Fz

RMSE - MS 0.001 N 0.001 N 0.001 N
RMSE total force - MS 0.015 N 0.017 N 0.033 N

RMSE - S2R 0.001 N 0.001 N 0.004 N
RMSET total force - S2R 0.032 N 0.041 N 0.131 N

TABLE I: The table summarizes the resulting errors for the models trained
on the mixed-source (MS) and sim-to-real (S2R) datasets.
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1Link to the video [5]: https://youtu.be/dDTga9PgWS0


