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I. INTRODUCTION

Robotics history sends a clear lesson: accurate and reliable
perception is an enabler of progress in robotics. From depth
cameras to convolutional neural networks, we have seen
how advances in perception foster the development of new
techniques and applications. For instance, the invention of
high-resolution LIDAR fueled self-driving cars, and the gen-
eralization capacity of deep neural networks has dominated
progress in perception and grasp planning in warehouse
automation [1} [2, 3]. The long term goal of our research
is to understand the key role that tactile sensing plays
in that progress. In particular we are interested in robotic
manipulation applications where occlusions difficult accurate
object pose estimation, and where behavior is dominated by
contact interactions.

In this work we propose a framework to estimate the pose
of a touched object, as illustrated in Fig.[T} Given a 3D model
of the object, the framework builds in simulation an object-
specific perception model, tailored at estimating the pose of
the object from one—or possibly multiple—tactile images of
the object. As a result, the approach localizes objects from
the first touch, i.e. without requiring any previous interaction.
The perception model is based on two key ideas:

Geometric tactile rendering in simulation of the local
shapes that the tactile sensor would observe from a
dense set of contact poses with the object.

- Tactile image matching of the real observed local
shape vs. the dense simulated set. A key contribution is
to do this comparison in an object-specific embedding
learnt in simulation, which provides robustness and
speed compared to methods based on pixel compar-
isons.

The proposed approach is motivated by scenarios where
the key requirement is estimation accuracy, and where ob-
ject models will be available beforehand. Many industrial
scenarios fit this category.

Several previous solutions to developing accurate object-
specific models for tactile pose estimation require tactile
exploration of the object [4, 5]. Acquiring this tactile ex-
perience can be expensive, and in many cases unrealistic. In
this paper, instead, we learn the perception model directly
from the 3D model of the object. The results in Sec.
for four objects show that the model learned in simulation
directly transfers to the real world. We attribute this both to
the object-specific nature of the learned model, and due to
the high-resolution nature of the tactile sensors used.
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Fig. 1. Tactile pose estimation. (left column) In simulation, we render
geometric tactile images of the object from a dense set of possible contacts
between the object and the tactile sensor. (right column) The real sensor
generates a tactile image from where we estimate its geometric local shape.
We then match it against the simulated set of local shapes to find the
distribution of contact poses that are more likely to have generated it. For
efficiency and robustness, we do the local shape matching in an embedding
learnt for the particular object.

Also key to the approach is that by simulating a dense
set of tactile imprints, the algorithm can reason over pose
distributions, not only best estimates. The learned embedding
allows to efficiently compute [cosine] distances between a
new tactile shape and the simulated dense set. This results
in a weighted distribution over object poses rather than just
a single pose prediction. This is key to dealing with the fact
that tactile provides local observations which in many cases
might not be sufficiently discriminative of a single pose.

Finally, by maintaining distributions in pose space, we
can incorporate extra constraints over the likelihood of each



pose. We have shown this in the case of multi-contact, where
information from multiple tactile readings must be combined
simultaneously, and in filtering, where pose constraints, in
the form of new tactile observations, come over time (results
omitted due to space constraints). By operating in a dis-
cretization of the pose space, our framework can potentially
handle many other pose constrains including constraints from
other perception systems (e.g., vision) or kinematics (e.g.,
non-penetration and grasp stability).

In summary, the main contribution of this work is a
framework for tactile pose estimation for objects with known
geometry, with the following primary strengths:

1. Provides accurate pose estimation from the first touch,
without requiring any previous interaction with the
object.

2. Reasons over pose distributions by efficiently comput-
ing distances of a real tactile shape vs. a dense set of
simulated tactile shapes.

3. Integrates other types of pose constraints such as those
arising from spatial distributions in multi-contact or
from temporal distributions in filtering.

II. RESULTS
A. Real data collection

While most computations of the algorithm are done in
simulation, the end goal of our approach is to provide
accurate pose estimation in the real world. To that aim,
we specially designed a system that reliably collects tactile
imprints and their associated poses:

Tactile sensor. We consider the tactile sensor GelSlim [6]
which provides high-resolution tactile readings.

Robot platform. To get controlled touches on the sensor, we
fix the sensor to the environment and use a 4 axis robotic
stage with translation and rotation in the horizontal plane
and vertical motion.

Objects. We test our algorithm on 4 objects from the
dataset [7] which contains more than 6k objects meshes
from McMaster. For each object, we build a dense grid that
contains the set of poses that would result in contact with
the sensor. The distance between closest neighbours is no
further than 2mm in average.

B. Pose estimation results

We test the accuracy of our approach by estimating object
poses from single tactile imprints. For each object, we
collected 150 pairs of tactile images and object poses. Given
two poses we measure their distance by sampling 5000 points
on the object 3D model and averaging the distance between
these points when the object is at either of the two poses. To
account for the different sizes of the object, we also compute
a normalized pose error that divides the original pose error
by the mean pose error obtained from predicting a random
pose from the grid of that object.

Fig. [2] shows the accuracy results for tactile pose esti-
mation for each of the four objects, in the form of error
distributions. We include the error distributions for:
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Fig. 2. Pose estimation results. For each object, we show in blue the error
distributions for the best match and the best out of 10. The distributions in
green refine the previous results using pointcloud registration between local
shapes. We observe that most of the error distributions are far from the
random error (black line) and close to the error obtained when selecting
the closest element from the grid (red line). For some objects like damping
pin, we see multimodality in the error distributions due to different contact
poses resulting in similar local shapes.
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1) Best-1: only considers the most likely pose of the grid.

2) Reg-1I: refines the most likely pose using FilterReg[8]].

3) Best-10: considers the 10 most likely poses of the grid
and selects the one that leads to lowest pose error. This
approach requires knowledge of the true pose and it is
not applicable in practice.

4) Reg-10: takes the 10 most likely poses, refines them
using FilterReg, and selects the one with lowest error.

For all objects, we observe that most of the error distribu-
tions are below the expected random error. Moreover most
errors are small and gathered around the closest error from
the grid (red line), specially when considering the best out of
the 10. In some cases, the error distributions are multimodal.
That happens specially when different poses of the object
lead to very similar local shapes.

Selecting the best error out of the 10 best poses results
in considerably lower errors and suggests that our approach
can provide meaningful pose distributions. For the case of
the elbow pipe we even observe that the error distributions
become almost unimodal when selecting the best out of 10.
Another important observation coming from these plots is
that the median errors are considerably low for all objects
even when only considering the most likely pose. For Best-
1 and Reg-1, we get median normalized errors of 0.11 and
0.09 for pin (4.9 and 4mm), 0.18 and 0.09 for damping pin
(5.6 and 2.8mm), and 0.28 and 0.18 for head (11.8 and
7.4mm). The elbow pipe is more challenging and bigger,
and we get median normalized errors of 0.59 and 0.56 (38.5
and 36.4mm). Finally, adding FilterReg clearly improves the
results. This is because it can refine the poses estimates when
the initial distance between local shapes is low enough and
locally transforming them is possible.
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